Browse > Article
http://dx.doi.org/10.5713/ajas.19.0289

Genomic analysis reveals selection signatures of the Wannan Black pig during domestication and breeding  

Zhang, Wei (College of Animal Science and Technology, Anhui Agricultural University)
Yang, Min (College of Animal Science and Technology, Anhui Agricultural University)
Wang, Yuanlang (College of Animal Science and Technology, Anhui Agricultural University)
Wu, Xudong (College of Animal Science and Technology, Anhui Agricultural University)
Zhang, Xiaodong (College of Animal Science and Technology, Anhui Agricultural University)
Ding, Yueyun (College of Animal Science and Technology, Anhui Agricultural University)
Yin, Zongjun (College of Animal Science and Technology, Anhui Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.33, no.5, 2020 , pp. 712-721 More about this Journal
Abstract
Objective: The Wannan Black pig is a typical Chinese indigenous, disease-resistant pig breed with high fertility, and a crude-feed tolerance that has been bred by artificial selection in the south of Anhui province for a long time. However, genome variation, genetic relationships with other pig breeds, and domestication, remain poorly understood. Here, we focus on elucidating the genetic characteristics of the Wannan Black pig and identifying selection signatures during domestication and breeding. Methods: We identified the whole-genome variation in the Wannan Black pig and performed population admixture analyses to determine genetic relationships with other domesticated pig breeds and wild boars. Then, we identified the selection signatures between the Wannan Black pig and Asian wild boars in 100-kb windows sliding in 10 kb steps by using two approaches: the fixation index (FST) and π ratios. Results: Resequencing the Wannan Black pig genome yielded 501.52 G of raw data. After calling single-nucleotide variants (SNVs) and insertions/deletions (InDels), we identified 21,316,754 SNVs and 5,067,206 InDels (2,898,582 inserts and 2,168,624 deletions). Additionally, we found genes associated with growth, immunity, and digestive functions. Conclusion: Our findings help in explaining the unique genetic and phenotypic characteristics of Wannan Black pigs, which in turn can be informative for future breeding programs of Wannan Black pigs.
Keywords
Wannan Black Pig; Selection Signature; Genome Variation; Porcine Industry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012;29:1969-73. https://doi.org/10.1093/molbev/mss075   DOI
2 Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009;84: 210-23. https://doi.org/10.1016/j.ajhg.2009.01.005   DOI
3 Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol 2014;31:1929-36. https://doi.org/10.1093/molbev/msu136   DOI
4 Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211   DOI
5 Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003;19:368-75. https://doi.org/10.1093/bioinformatics/btf877   DOI
6 Davis TL, Walker JR, Campagna-Slater V, et al. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 2010;8:e1000439. https://doi.org/10.1371/journal.pbio.1000439   DOI
7 Prins BP, Mead TJ, Brody JA, et al. Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biol 2018;19:87. https://doi.org/10.1186/s13059-018-1457-6   DOI
8 Park AC, Phan N, Massoudi D, et al. Deficits in col5a2 expression result in novel skin and adipose abnormalities and predisposition to aortic aneurysms and dissections. Am J Pathol 2017;187:2300-11. https://doi.org/10.1016/j.ajpath.2017.06. 006   DOI
9 Cheeseman IM, Hori T, Fukagawa T, Desai A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 2008;19:587-94. https://doi.org/10.1091/mbc.e07-10-1051   DOI
10 Giuffra E, Kijas JMH, Amarger V, Carlborg O, Jeon JT, Andersson L. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 2000; 154:1785-91.   DOI
11 Veirano Frechou R. The state of the world's animal genetic resources for food and agriculture. Acta Paediatr 2007;81: 21-4.
12 Enard D, Messer PW, Petrov D. Genome-wide signals of positive selection in human evolution. Genome Res 2014;24: 885-95.   DOI
13 Frantz LAF, Schraiber JG, Madsen O, et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet 2015;47:1141-8. https://doi.org/10.1038/ng.3394   DOI
14 Grossman SR, Shlyakhter I, Karlsson EK, et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 2010;327:883-6. https://doi.org/10. 1126/science.1183863   DOI
15 Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 1973;74:175-95.   DOI
16 Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genet 1983;105:437-60.   DOI
17 Rubin C, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010;464:587-91. https://doi.org/10.1038/nature08832   DOI
18 Salas A. The natural selection that shapes our genomes. Forensic Sci Int Genet 2019;39:57-60. https://doi.org/10.1016/j.fsigen.2018.12.003   DOI
19 Zhao P, Yu Y, Feng W, et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. GigaScience 2018; 7:giy058. https://doi.org/10.1093/gigascience/giy058
20 Burbach BJ, Medeiros RB, Mueller KL, Shimizu Y. T-cell receptor signaling to integrins. Immunol Rev 2007;218:65-81. https://doi.org/10.1111/j.1600-065X.2007.00527.x   DOI
21 Zhao B, Tumaneng K, Guan KL. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011;13:877-83. https://doi.org/10.1038/ncb2303   DOI
22 Khanal RC, Nemere I. Regulation of intestinal calcium transport. Ann Rev Nutr 2008;28:179-96. https://doi.org/10.1146/annurev.nutr.010308.161202   DOI
23 Aksanov O, Green P, Birk RZ. BBS4 directly affects proliferation and differentiation of adipocytes. Cell Mol Life Sci 2014; 71:3381-92. https://doi.org/10.1007/s00018-014-1571-x   DOI
24 Wang Q, Ning H, Peng H, et al. Tristetraprolin inhibits macrophage IL-27-induced activation of antitumour cytotoxic T cell responses. Nat Commun 2017;8:867. https://doi.org/10.1038/s41467-017-00892-y   DOI
25 Richard AC, Peters JE, Savinykh N, et al. Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease. PLoS Genet 2018;14:e1007458. https://doi.org/10.1371/journal.pgen.1007458   DOI
26 Koochakzadeh L, Hosseinverdi S, Hedayat M, et al. Study of SH2D1A gene mutation in paediatric patients with B-cell lymphoma. Allergol Immunopathol 2015;43:568-70. https://doi.org/10.1016/j.aller.2015.01.007   DOI
27 Fischl H, Howe FS, Furger AM, Mellor J. Paf1 has distinct roles in transcription elongation and differential transcript fate. Mol Cell 2017;65:685-98. https://doi.org/10.1016/j.molcel. 2017.01.006   DOI
28 Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett 2018;23:21. https://doi.org/10.1186/s11658-018-0085-1   DOI
29 Glavey SV, Manier S, Natoni A, et al. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood 2014;124:1765-76. https://doi.org/10.1182/blood-2014- 03-560862
30 Rubin C, Megens H, Barrio AM, et al. Strong signatures of selection in the domestic pig genome. Proc Nat Acad Sci USA 2012;109:19529-36. https://doi.org/10.1073/pnas.1217149109   DOI
31 Kim J, Hanotte O, Mwai OA, et al. The genome landscape of indigenous African cattle. Genome Biol 2017;18:34. https://doi.org/10.1186/s13059-017-1153-y   DOI
32 Axelsson E, Ratnakumar A, Arendt M, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013;495:360-4. https://doi.org/10.1038/ nature11837   DOI
33 Alberto FJ, Boyer F, Orozco-terWengel P, et al. Convergent genomic signatures of domestication in sheep and goats. Nat Commun 2018;9:813. https://doi.org/10.1038/s41467-018-03206-y   DOI
34 Zhang Z, Jia Y, Almeida P, et al. Whole-genome resequencing reveals signatures of selection and timing of duck domestication. GigaScience 2018;7:giy027. https://doi.org/10.1093/gigascience/giy027
35 Li M, Tian S, Jin L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 2013;45:1431-8. https://doi.org/10.1038/ng.2811   DOI
36 Zhang X, Huang L, Wu T, Feng Y, Ding Y, Yin ZJ. Polymorphism of the retinol-binding protein 4 gene (RBP4) and its association with carcass and meat quality traits in swine. Turk J Vet Anim Sci 2015;39:395-400. https://doi.org/10.3906/vet-1502-57   DOI
37 Ding YY, Zhang W, Zhang MQ, et al. Functional and association studies of the cholesteryl ester transfer protein (CETP) gene in a Wannan Black pig model. Anim Genet 2015;46:702-6. https://doi.org/10.1111/age.12370   DOI
38 Ding X, Zhang X, Yang Y, et al. Polymorphism, expression of natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) and its association with immune traits in pigs. Asian-Australas J Anim Sci 2014;27:1189-95. https://doi.org/10.5713/ajas.2014.14017   DOI
39 Horiuchi N, Kumagai D, Matsumoto K, Inokuma H, Furuoka H, Kobayshi Y. Detection of the nonsense mutation of OPA3 gene in Holstein Friesian cattle with dilated cardiomyopathy in japan. J Vet Med Sci 2015;77:1281-3. https://doi.org/10.1292/jvms.15-0150   DOI
40 Nishi A, Numata S, Tajima A, et al. De novo non-synonymous TBL1XR1 mutation alters Wnt signaling activity. Sci Rep 2017; 7:2887. https://doi.org/10.1038/s41598-017-02792-z   DOI
41 Tian M, Zhang X, Ye PF, et al. MicroRNA-21 and microRNA-214 play important role in reproduction regulation during porcine estrous. Anim Sci J 2018;89:1398-405. https://doi.org/10.1111/asj.13087   DOI
42 Patel RK, Jain M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One 2012;7:e30619. https://doi.org/10.1371/journal.pone.0030619   DOI
43 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60. https://doi.org/10.1093/bioinformatics/btp324   DOI
44 Li H, Handsaker B, Wysoker A, et al. The Sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078-99. https://doi.org/10.1093/bioinformatics/btp352   DOI
45 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303. https://doi.org/10.1101/gr.107524.110   DOI
46 Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/ nar/gkq603   DOI
47 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011   DOI
48 Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 2009;10:639-50. https://doi.org/10.1038/nrg2611   DOI
49 Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795   DOI
50 Lee TH, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 2014;15:162. https://doi.org/10.1186/1471-2164-15-162   DOI