Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.1.130

Genetic Analysis Strategies for Improving Race Performance of Thoroughbred Racehorse and Jeju Horse  

Baek, Kyung-Wan (Division of Sport Science, Pusan National University)
Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Park, Jung-Jun (Division of Sport Science, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.1, 2018 , pp. 130-139 More about this Journal
Abstract
In ancient times, horse racing was done in ancient European countries in the form of wagon races or mountain races, and wagon racing was adopted as a regular event at the Greek Olympic Games. Thoroughbred horse has been bred since 17th century by intensive selective breeding for its speed, stamina, and racing ability. Then, in the 18th century, horse racing using the Thoroughbred species began to gain popularity among nobles. Since then, horse racing has developed into various forms in various countries and have developed into flat racing, steeplechasing, and harness racing. Thoroughbred racehorse has excellent racing abilities because of powerful selection breeding strategy for 300 years. It is necessary to maintain and maximize horses' ability to race, because horse industries produce enormous economic benefits through breeding, training, and horse racing. Next-generation sequencing (NGS) methods which process large amounts of genomic data have been developed recently. Based on the remarkable development of these genomic analytical techniques, it is now possible to easily carry out animal breeding strategies with superior traits. In order to select breeding racehorse with superior racing traits, the latest genomic analysis techniques have to be introduced. In this paper, we will review the current efforts to improve race performance for racehorses and to examine the research trends of genomic analysis. Finally, we suggest to utilize genomic analysis in Thoroughbred racehorse and Jeju horse, and propose a strategy for selective breeding for Jeju horse, which contributes job creation of Korea.
Keywords
Exercise; genomics; Jeju horse; race performance; thoroughbred horse;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shrestha, M., Eriksson, S., Schurink, A., Andersson, L. S., Sundquist, M., Frey, R., Brostrom, H., Bergstrom, T., Ducro, B. and Lindgren, G. 2015. Genome-wide association study of insect bite hypersensitivity in Swedish-born Icelandic horses. J. Hered. 106, 366-374.   DOI
2 Mach, N., Ramayo-Caldas, Y., Clark, A., Moroldo, M., Robert, C., Barrey, E., Lopez, J. M. and Le Moyec, L. 2017. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genomics 18, 187.   DOI
3 Marklund, L., Moller, M. J., Sandberg, K. and Andersson, L. 1996. A missense mutation in the gene for melanocytestimulating hormone receptor (MCIR) is associated with the chestnut coat color in horses. Mamm. Genome 7, 895-899.   DOI
4 MARTI, E. and Binns, M. 1998. Horse genome mapping: a new era in horse genetics? Equine Vet. J. 30, 13-17.   DOI
5 McCue, M. E., Bannasch, D. L., Petersen, J. L., Gurr, J., Bailey, E., Binns, M. M., Distl, O., Guerin, G., Hasegawa, T. and Hill, E. W. 2012. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 8, e1002451.   DOI
6 Brooks, S. A., Gabreski, N., Miller, D., Brisbin, A., Brown, H. E., Streeter, C., Mezey, J., Cook, D. and Antczak, D. F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet. 6, e1000909.   DOI
7 Brown, J., Ollier, W., Thomson, W., Matthews, J., Carter, S., Binns, M., Pinchbeck, G. and Clegg, P. 2006. TNF-${\alpha}$ SNP haplotype frequencies in equidae. Tissue antigens 67, 377-382.   DOI
8 Brunberg, E., Andersson, L., Cothran, G., Sandberg, K., Mikko, S. and Lindgren, G. 2006. A missense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genet. 7, 46.
9 Chowdhary, B. P., Raudsepp, T., Honeycutt, D., Owens, E. K., Piumi, F., Guerin, G., Matise, T. C., Kata, S. R., Womack, J. E. and Skow, L. C. 2002. Construction of a 5000rad wholegenome radiation hybrid panel in the horse and generation of a comprehensive and comparative map for ECA11. Mamm. Genome 13, 89-94.   DOI
10 Chowdhary, B. P. and Raudsepp, T. 2008. The Horse Genome Derby: racing from map to whole genome sequence. Chromosome Res. 16, 109-127.   DOI
11 Consortium, T. C. e. S. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 2012-2018.
12 Aleman, M., Riehl, J., Aldridge, B. M., Lecouteur, R. A., Stott, J. L. and Pessah, I. N. 2004. Association of a mutation in the ryanodine receptor 1 gene with equine malignant hyperthermia. Muscle Nerve 30, 356-365.   DOI
13 Barrey, E., Bonnamy, B., Barrey, E., Mata, X., Chaffaux, S. and Guerin, G. 2010. Muscular microRNA expressions in healthy and myopathic horses suffering from polysaccharide storage myopathy or recurrent exertional rhabdomyolysis. Equine Vet. J. 42, 303-310.   DOI
14 Wade, C. M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T. L., Adelson, D. L., Bailey, E., Bellone, R. R., Blocker, H., Distl, O., Edgar, R. C., Garber, M., Leeb, T., Mauceli, E., MacLeod, J. N., Penedo, M. C., Raison, J. M., Sharpe, T., Vogel, J., Andersson, L., Antczak, D. F., Biagi, T., Binns, M. M., Chowdhary, B. P., Coleman, S. J., Della Valle, G., Fryc, S., Guerin, G., Hasegawa, T., Hill, E. W., Jurka, J., Kiialainen, A., Lindgren, G., Liu, J., Magnani, E., Mickelson, J. R., Murray, J., Nergadze, S. G., Onofrio, R., Pedroni, S., Piras, M. F., Raudsepp, T., Rocchi, M., Roed, K. H., Ryder, O. A., Searle, S., Skow, L., Swinburne, J. E., Syvanen, A. C., Tozaki, T., Valberg, S. J., Vaudin, M., White, J. R., Zody, M. C., Broad Institute Genome Sequencing, P., Broad Institute Whole Genome Assembly, T., Lander, E. S. and Lindblad-Toh, K. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865-867.   DOI
15 McCue, M. E., Valberg, S. J., Miller, M. B., Wade, C., DiMauro, S., Akman, H. O. and Mickelson, J. R. 2008. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 91, 458-466.   DOI
16 Nam, D. Y. 1969. Horse production in Cheju during Lee dynasty. Korea Hist. Res. Soc. 4, 77-131.
17 Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B. and Moltke, I. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74-78.   DOI
18 Cucchi, T., Mohaseb, A., Peigne, S., Debue, K., Orlando, L. and Mashkour, M. 2017. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies. Royal Soc. Open Sci. 4, 160997.   DOI
19 Cunningham, E., Dooley, J., Splan, R. and Bradley, D. 2001. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 32, 360-364.   DOI
20 Do, K. T., Kong, H. S., Lee, J. H., Lee, H. K., Cho, B. W., Kim, H. S., Ahn, K. and Park, K. D. 2014. Genomic characterization of the Przewalski's horse inhabiting Mongolian steppe by whole genome re-sequencing. Livest. Sci. 167, 86-91.   DOI
21 Ward, T. L., Valberg, S. J., Adelson, D. L., Abbey, C. A., Binns, M. M. and Mickelson, J. R. 2004. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV. Mamm. Genome 15, 570-577.
22 Reissmann, M., Bierwolf, J. and Brockmann, G. 2007. Two SNPs in the SILV gene are associated with silver coat colour in ponies. Anim. Genet. 38, 1-6.   DOI
23 Park, K. D., Park, J., Ko, J., Kim, B. C., Kim, H. S., Ahn, K., Do, K. T., Choi, H., Kim, H. M., Song, S., Lee, S., Jho, S., Kong, H. S., Yang, Y. M., Jhun, B. H., Kim, C., Kim, T. H., Hwang, S., Bhak, J., Lee, H. K. and Cho, B. W. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13, 473.   DOI
24 Penedo, M., Millon, L., Bernoco, D., Bailey, E., Binns, M., Cholewinski, G., Ellis, N., Flynn, J., Gralak, B. and Guthrie, A. 2005. International Equine Gene Mapping Workshop Report: a comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenet. Genome Res. 111, 5-15.   DOI
25 Petersen, J. L., Mickelson, J. R., Cothran, E. G., Andersson, L. S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M. M., Borges, A. S. and Brama, P. 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 8, 54997.   DOI
26 Young, A. E., Bower, L. P., Affolter, V. K., De Cock, H. E., Ferraro, G. L. and Bannasch, D. L. 2007. Evaluation of FOXC2 as a candidate gene for chronic progressive lymphedema in draft horses. Vet. J. 174, 397-399.   DOI
27 Rieder, S., Taourit, S., Mariat, D., Langlois, B. and Guerin, G. 2001. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 12, 450-455.   DOI
28 Santschi, E. M., Purdy, A. K., Valberg, S. J., Vrotsos, P. D., Kaese, H. and Mickelson, J. R. 1998. Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mamm. Genome 9, 306-309.   DOI
29 Hill, E. W., Gu, J., Eivers, S. S., Fonseca, R. G., McGivney, B. A., Govindarajan, P., Orr, N., Katz, L. M. and MacHugh, D. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5, e8645.   DOI
30 Wnuk, M., Lewinska, A., Gurgul, A., Zabek, T., Potocki, L., Oklejewicz, B., Bugno-Poniewierska, M., Wegrzyn, M. and Slota, E. 2014. Changes in DNA methylation patterns and repetitive sequences in blood lymphocytes of aged horses. Age 36, 31-48.   DOI
31 Zabek, T., Semik, E., Szmatola, T., Oklejewicz, B., Fornal, A. and Bugno-Poniewierska, M. 2016. Age-related methylation profiles of equine blood leukocytes in the RNASEL locus. J. Appl. Genet. 57, 383-388.   DOI
32 Zabek, T., Semik, E., Wnuk, M., Fornal, A., Gurgul, A. and Bugno-Poniewierska, M. 2015. Epigenetic structure and the role of polymorphism in the shaping of DNA methylation patterns of equine OAS1 locus. J. Appl. Genet. 56, 231-238.   DOI
33 Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L. and Li, Y. 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131.   DOI
34 Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L., Li, Y., He, T. and Zheng, Y. 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131.   DOI
35 Soana, S., Gnudi, G. and Bertoni, G. 1999. The Teeth of the Horse: Evolution and Anatomo-Morphological and Radiographic Study of Their Development in the Foetus. Anat. Histol. Embryol. 28, 273-280.   DOI
36 Kim, M. C., Lee, S. W., Ryu, D. Y., Cui, F. J., Bhak, J. and Kim, Y. 2014. Identification and characterization of microRNAs in normal equine tissues by next generation sequencing. PLoS One 9, e93662.   DOI
37 Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H. and Saitou, N. 1995. Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse. J. Mol. Evol. 41, 180-188.
38 Jost, U., Klukowska-Rotzler, J., Dolf, G., Swinburne, J., Ramseyer, A., Bugno, M., Burger, D., Blott, S. and Gerber, V. 2007. A region on equine chromosome 13 is linked to recurrent airway obstruction in horses. Equine Vet. J. 39, 236-241.   DOI
39 Jurkat-Rott, K. and Lehmann-Horn, F. 2007. Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 4, 216-224.   DOI
40 Kim, H., Lee, T., Park, W., Lee, J. W., Kim, J., Lee, B. Y., Ahn, H., Moon, S., Cho, S., Do, K. T., Kim, H. S., Lee, H. K., Lee, C. K., Kong, H. S., Yang, Y. M., Park, J., Kim, H. M., Kim, B. C., Hwang, S., Bhak, J., Burt, D., Park, K. D., Cho, B. W. and Kim, H. 2013. Peeling back the evolutionary layers of molecular mechanisms responsive to exercisestress in the skeletal muscle of the racing horse. DNA Res. 20, 287-298.   DOI
41 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M. and FitzHugh, W. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI
42 Hill, E. W., McGivney, B. A., Gu, J., Whiston, R. and MacHugh, D. E. 2010. A genome-wide SNP-association study confirms a sequence variant (g. 66493737C> T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11, 552.   DOI
43 Tozaki, T., Takezaki, N., Hasegawa, T., Ishida, N., Kurosawa, M., Tomita, M., Saitou, N. and Mukoyama, H. 2003. Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. J. Hered. 94, 374-380.   DOI
44 Bower, M. A., McGivney, B. A., Campana, M. G., Gu, J., Andersson, L. S., Barrett, E., Davis, C. R., Mikko, S., Stock, F., Voronkova, V., Bradley, D. G., Fahey, A. G., Lindgren, G., MacHugh, D. E., Sulimova, G. and Hill, E. W. 2012. The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun. 3, 643.   DOI
45 Brooks, S. A. and Bailey, E. 2005. Exon skipping in the KIT gene causes a Sabino spotting pattern in horses. Mamm. Genome 16, 893-902.   DOI
46 Solberg, O., Jackson, K., Millon, L., Stott, J., Vandenplas, M., Moore, J. and Watson, J. 2004. Genomic characterization of equine Interleukin-4 receptor ${\alpha}$-chain (IL4R). Vet. Immunol. Immunopathol. 97, 187-194.   DOI
47 Spirito, F., Charlesworth, A., Linder, K., Ortonne, J. P., Baird, J. and Meneguzzi, G. 2002. Animal models for skin blistering conditions: absence of laminin 5 causes hereditary junctional mechanobullous disease in the Belgian horse. J. Invest. Dermatol. 119, 684-691.   DOI
48 Swinburne, J. E., Boursnell, M., Hill, G., Pettitt, L., Allen, T., Chowdhary, B., Hasegawa, T., Kurosawa, M., Leeb, T. and Mashima, S. 2006. Single linkage group per chromosome genetic linkage map for the horse, based on two threegeneration, full-sibling, crossbred horse reference families. Genomics 87, 1-29.   DOI
49 Trakovicka, A., Gabor, M., Miluchova, M., Minarovic, T. and Stastna, D. 2012. Analysis of the Nebulin-Related Anchoring Protein Gene (NRAP) SNP Polymorphism (C/T) in Slovak Warmblood Horse by PCR-RFLP Method. Sci. Pap. Anim. Sci. Biotechnol. 45, 265-268.
50 Tryon, R. C., White, S. D. and Bannasch, D. L. 2007. Homozygosity mapping approach identifies a missense mutation in equine cyclophilin B (PPIB) associated with HERDA in the American Quarter Horse. Genomics 90, 93-102.   DOI
51 Gordon, J. 2001. The Horse Industry. Contributing to the Australian Economy. Canberra: Rural Industries Research and Development Corporation 1-58.
52 Schnider, D., Rieder, S., Leeb, T., Gerber, V. and Neuditschko, M. 2017. A genome-wide association study for equine recurrent airway obstruction in European Warmblood horses reveals a suggestive new quantitative trait locus on chromosome 13. Anim. Genet. 48, 691-693.   DOI
53 Gim, J. A. and Kim, H. S. 2014. Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome. J. Life Sci. 24, 1258-1267.   DOI
54 Gim, J. A., Lee, S., Kim, D. S., Jeong, K. S., Hong, C. P., Bae, J. H., Moon, J. W., Choi, Y. S., Cho, B. W. and Cho, H. G. 2015. HEpD: A database describing epigenetic differences between Thoroughbred and Jeju horses. Gene 560, 83-88.   DOI
55 Gim, J.-A., Lee, S., Kim, D.-S., Jeong, K.-S., Hong, C. P., Bae, J.-H., Moon, J.-W., Choi, Y.-S., Cho, B.-W. and Cho, H.-G. 2015. HExDB: a database for epigenetic changes occurring after horse exercise. Genes Genom. 37, 287-294.   DOI
56 Hill, E., Gu, J., McGivney, B. and MacHugh, D. 2010. Targets of selection in the Thoroughbred genome contain exerciserelevant gene SNPs associated with elite racecourse performance. Anim. Genet. 41, 56-63.   DOI
57 Gim, J. A., Ayarpadikannan, S., Eo, J., Kwon, Y. J., Choi, Y., Lee, H. K., Park, K. D., Yang, Y. M., Cho, B. W. and Kim, H. S. 2014. Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene 547, 152-158.   DOI
58 Gim, J. A., Hong, C. P., Kim, D. S., Moon, J. W., Choi, Y., Eo, J., Kwon, Y. J., Lee, J. R., Jung, Y. D., Bae, J. H., Choi, B. H., Ko, J., Song, S., Ahn, K., Ha, H. S., Yang, Y. M., Lee, H. K., Park, K. D., Do, K. T., Han, K., Yi, J. M., Cha, H. J., Ayarpadikannan, S., Cho, B. W., Bhak, J. and Kim, H. S. 2015. Genome-wide analysis of DNA methylation before- and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells 38, 210-220.   DOI
59 Gim, J. A. and Kim, H. S. 2017. Identification and Expression Analyses of Equine Endogenous Retroviruses in Horses. Mol. Cells 40, 796-804.
60 Goffeau, A., Barrell, B., Bussey, H., Davis, R., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J., Jacq, C. and Johnston, M. 1996. Life with 6000 genes. Science 274, 546-567.   DOI
61 Gu, J., MacHugh, D., McGivney, B., Park, S., Katz, L. and Hill, E. 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42, 569-575.   DOI
62 Hansen, M., Knorr, C., Hall, A., Broad, T. and Brenig, B. 2007. Sequence analysis of the equine SLC26A2 gene locus on chromosome 14q15$\rightarrow$ q21. Cytogenet. Genome Res. 118, 55-62.   DOI
63 Garcia-Etxebarria, K. and Jugo, B. M. 2012. Detection and characterization of endogenous retroviruses in the horse genome by in silico analysis. Virology 434, 59-67.   DOI
64 Hill, E., Bradley, D., Al-Barody, M., Ertugrul, O., Splan, R., Zakharov, I. and Cunningham, E. 2002. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 33, 287-294.   DOI
65 Lau, A. N., Peng, L., Goto, H., Chemnick, L., Ryder, O. A. and Makova, K. D. 2009. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. Mol. Biol. Evol. 26, 199-208.   DOI
66 Lee, J.-R., Hong, C. P., Moon, J.-W., Jung, Y.-D., Kim, D.-S., Kim, T.-H., Gim, J.-A., Bae, J.-H., Choi, Y. and Eo, J. 2014. Genome-wide analysis of DNA methylation patterns in horse. BMC Genomics 15, 598.   DOI
67 MacFadden, B. J., Bryant, J. D. and Mueller, P. A. 1991. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: evidence from the Miocene of Florida. Geology 19, 242-245.   DOI
68 Mach, N., Plancade, S., Pacholewska, A., Lecardonnel, J., Riviere, J., Moroldo, M., Vaiman, A., Morgenthaler, C., Beinat, M., Nevot, A., Robert, C. and Barrey, E. 2016. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse. Sci. Rep. 6, 22932.   DOI