• Title/Summary/Keyword: Genomic Selection

Search Result 221, Processing Time 0.036 seconds

A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system (벼에서 CRISPR/Cas9 활용 고빈도 유전자 편집 방법)

  • Jung, Yu Jin;Bae, Sangsu;Lee, Geung-Joo;Seo, Pil Joon;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.

Porcine LMNA Is a Positional Candidate Gene Associated with Growth and Fat Deposition

  • Choi, Bong-Hwan;Lee, Jung-Sim;Lee, Seung-Hwan;Kim, Seung-Chang;Kim, Sang-Wook;Kim, Kwan-Suk;Lee, Jun-Heon;Seong, Hwan-Hoo;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1649-1659
    • /
    • 2012
  • Crosses between Korean and Landrace pigs have revealed a large quantitative trait loci (QTL) region for fat deposition in a region (89 cM) of porcine chromosome 4 (SSC4). To more finely map this QTL region and identify candidate genes for this trait, comparative mapping of pig and human chromosomes was performed in the present study. A region in the human genome that corresponds to the porcine QTL region was identified in HSA1q21. Furthermore, the LMNA gene, which is tightly associated with fat augmentation in humans, was localized to this region. Radiation hybrid (RH) mapping using a Sus scrofa RH panel localized LMNA to a region of 90.3 cM in the porcine genome, distinct from microsatellite marker S0214 (87.3 cM). Two-point analysis showed that LMNA was linked to S0214, SW1996, and S0073 on SSC4 with logarithm (base 10) of odds scores of 20.98, 17.78, and 16.73, respectively. To clone the porcine LMNA gene and to delineate the genomic structure and sequences, including the 3'untranslated region (UTR), rapid amplification of cDNA ends was performed. The coding sequence of porcine LMNA consisted of 1,719 bp, flanked by a 5'UTR and a 3'UTR. Two synonymous single nucleotide polymorphisms (SNPs) were identified in exons 3 and 7. Association tests showed that the SNP located in exon 3 (A193A) was significantly associated with weight at 30 wks (p<0.01) and crude fat content (p<0.05). This association suggests that SNPs located in LMNA could be used for marker-assisted selection in pigs.

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains with higher β-glucan (베타글루칸 함량이 높은 큰느타리버섯 선발을 위한 SCAR marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Cho, Yong Un;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.79-83
    • /
    • 2015
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains with higher ${\beta}$-glucan from control strain was developed. Genomic DNAs of 9 control strains of Pleurotus eryngii and 9 Pleurotus eryngii strains with higher ${\beta}$-glucan were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). One-hundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 91 bp was yielded by OP-R03 primer from the Pleurotus eryngii strains with higher ${\beta}$-glucan. A sequence characterized amplified region (SCAR) marker, designated as OP-R03-1-F and OP-R03-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-R03-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains with higher ${\beta}$-glucan from the control strains.

Assessment of Genetic Diversity of Horse Breeds Using Microsatellite Makers (Microsatellite makers를 이용한 마품종 간의 평가 및 유전적 다양성)

  • Jung, Ji-Hye;Lee, Mi-Rang;Ha, Tae-Yong;Kim, Seon-Ku;Shin, Teak-Soon;Kang, Han-Seok;Lee, Hong-Gu;Cho, Gil-Jae;Park, Kyung-Do;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • To assist in selection schemes we estimate the genetic diversity of the horse breeds. Genetic diversity at 13 microsatellite loci was compared in six horse breeds : Jeju Native Horse, American Quarter, Jeju Racing Horse, Mongolian Horse, Japanese Horse and Thoroughbred. All of the equine microsatellite used in this study were amplified and were polymorphic. The expected total heterozygosity over all the populations varied between 0.669 and 0.869 and the expected heterozygosity within population range from 0.569 to 0.219 in this study. The low coefficient of gene differentiation value showed that only 0.118 of the diversity was between horses breeds. The constructed dendrogram from the genetic distance matrix showed little differentiation between horse breeds using DISPAN program. The genetic distance using 13 microsatellites ranged between 0.137 and 0.414 for the six horse breeds. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in horse populations. The genetic diversity of the six horse breeds to each other closed to their geographical distribution. Suggesting that the loci would be suitable for horse breeds parentage testing. Therefore, Microsatellite marker seems to be very useful for clarifying the evolutionary relationships of closely related populations.

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains adaptable to high-temperature (큰느타리버섯의 고온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Park, So Yeon;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.226-231
    • /
    • 2014
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains adaptable to high-temperature from control strain was developed. Genomic DNAs of 7 control strains of Pleurotus eryngii and 7 Pleurotus eryngii strains adaptable to high-temperature were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). Onehundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 385 bp was yielded by OP-A06 primer from the Pleurotus eryngii strains adaptable to high-temperature. A sequence characterized amplified region (SCAR) marker, designated as OP-A06-1-F and OP-A06-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-A06-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains adaptable to high-temperature from the control strains.

Production of Transgenic Melon from the Cultures of Cotyledonary-Node Explant Using Agrobacterium-Mediated Transformation (Agrobacterium 공동 배양을 통한 자엽절 절편 배양으로부터 멜론 형질전환체 생산)

  • Cho Mi-Ae;Song Yun-Mi;Park Yun-Ok;Ko Suck-Min;Min Sung-Ran;Liu Jang-Ryol;Lee Jun-Haeng;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.257-262
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic melon. Cotyledonary-node explants of melon (Cucumis melo L. cv. Super VIP) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 35S promoter-gus gene as reporter gene and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selective agent, and the binary vector (pPTN290) carrying with Ubiquitin promoter-GUS gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent, respectively. The maximum transformation efficiency (0.12%) was only obtained from the cotyledonary-node explants co-cultivated with EHA101 strain (pPTN289) on selection medium with 5 mg/L glufosinate and not produced a transgenic melon from the cotyledon or cotyledonary-node co-cultivated with other strains. Finally, five plants transformed showed the resistance in glufosinate antibiotic and the GUS positive response in leaf ($T_0$), flower ($T_0$), seeds ($T_1$) and plantlet ($T_1$). Southern blot analysis revealed that the gus gene integrated into each genome of transgenic melon.

Tissues Expression, Polymorphisms of IFN Regulatory Factor 6 (IRF6) Gene and Their Associated with Immune Traits in Three Pig Populations

  • Liu, Yang;Xu, Jingeng;Fu, Weixuan;Weng, Ziqing;Niu, Xiaoyan;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • Interferon regulatory factor 6 (IRF6) gene is a member of the IRF-family, and plays functionally diverse roles in the regulation of the immune system. In this report, the 13,720 bp porcine IRF6 genomic DNA structure was firstly identified with a putative IRF6 protein of 467 amino acids. Alignment and phylogenetic analysis of the porcine IRF6 amino acid sequences with their homologies to other species showed high identity (over 96%). Tissues expression of IRF6 mRNA was observed by RT-PCR, the results revealed IRF6 expressed widely in eight tissues. One SNP (HQ026023:1383 G>C) in exon7 and two SNPs (HQ026023:130 G>A; 232 C>T) in the 5′ promoter region of porcine IRF6 gene were demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with immune traits including IFN-${\gamma}$ and IL10 concentrations in serum was carried out in three pig populations including Large White, Landraces and Songliao Black pig (a Chinese indigenous breed). The results showed that the SNP (HQ026023:1383 G>C) was significantly associated with the level of IFN-${\gamma}$ (d 20) in serum (p = 0.038) and the ratio of IFN-${\gamma}$ to IL10 (d 20) in serum (p = 0.041); The other two SNPs (HQ026023:130 G>A; 232 C>T) were highly significantly associated with IL10 level in serum both at the day 20 (p = 0.005; p = 0.001) and the day 35 (p = 0.004; p = 0.006). Identification of the porcine IRF6 gene will help our further understanding of the molecular basis of the IFN regulation pathway in the porcine immune response. All these results should indicate that the IRF6 gene can be regarded as a molecular marker associated with the IL10 level in serum and used for genetic selection in the pig breeding.

Introduction of Bean Chitinase Gene into Korean Ginseng by Agrobaterium tumefaciens (Agrobacterium tumefaciens에 의한 강낭콩 키틴가수분해효소 유전자의 고려인삼으로의 도입)

  • 이행순;권석윤;백경희;김석원;이광웅;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.95-99
    • /
    • 1995
  • We have previously established a system for plant regeneration through somatic embryogenesis and Agrobacterium-mediated transformation of Korean ginseng. In this study to produce a fungus-resistant plant, we introduced a bean chitinase gene into ginseng using the transformation system. A binary vector pChi/748 was constructed by introducing the bean basic chitinase gene into EcoRI site of pGA748 which carries the CaMV 35S promoter governing the introduced gene and neomycin phosphotransferase II(NPT-II)gene as a positive selection marker. Cotyledonary explants were cocultured with A. tumefaciens strain LBA4404 harboring the binary vertor pChi/748 for 48 h, and transferred to MS medium supplemented with l mg/L2,4-D,0.1mg/L kinetin, 100 mg/L kanamycin, and 500mg/L carbenicillin. Kanamycin-resistant calli were formed on the cut surface of cotyledonary explants after one month of culture, and subsequently they gave rise to somatic embryos. Upon transfer onto medium containing 1 mg/L each of BA and GA$_3$, most of them converted to plantlets after 5 weeks of culture. The genomic DNA of eight kanamycin-resistant regenerants was subjected to polymerase chain reaction (PCR) using two specific 21-mer oligonucleotides derived from the chitinase gene. PCR-Southern blot analysis confirmed that the chitinase gene was incorporated into six out of the eight regenerants..

  • PDF

Factors Affecting Introduction of rolC Gene in Lycium chinense Mill. (구기자나무(Lycium chinense Mill.)로의 rolC유전자 도입에 미치는 요인)

  • 박용구;최명석;김병원;정원일;노광수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 1995
  • Transformation system of rolC gene, dwarf gene in Lycium chinenese Mill. established by using system. Pin-punctured leaves induced numerous adventious buds in abaxial side when cultured on 3/2 MS medium containing 2.0 mg/L zeatin. Survival rate and shoot regeneration frequency of leaf explants decreased as kanamycin sulfate level increased. Shoot buds were not regenerated on 3/2 MS medium containing 10 mg/L kanamycin sulfate and 2.0 mg/L zeaein. Of the level tested, 10 mg/L of kanamycin sulfate was optimum in selection of kanamycin sulfate resistant plant. Co-culture time of bacteria and leaf explants was affected at the frequency of shoot regeneration and survival of leaf explants. Leaf explants co-cultivated during above 48hr severely decreased survival rate and shooting rate. Best result on survival rate and shooting rate were obtained when exposed for 24 h. 80 explants of 105 leaf explants survived on 3/2 MS medium containing 2.0 mg/L zeatin and 10 mg/L kanamycin sulfate, and 15 shoots was regenerated on the same medium. To select kanamycin sulfate resistant plant, regenerate as cultured on 3/2 MS medium containing 10 mg/L kanamycin sulfate, and obtained 5 kanamycin resistant plants. Southern blot analysis conformed that the rolC gene was incorporated into the genomic DNA of kanamycin resistant plants.

  • PDF

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.