Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12017

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs  

Liu, Yang (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Wang, Chonglong (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Liu, Zhengzhu (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Xu, Jingen (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Fu, Weixuan (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Wang, Wenwen (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Ding, Xiangdong (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Liu, Jianfeng (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Zhang, Qin (Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.8, 2012 , pp. 1089-1095 More about this Journal
Abstract
Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.
Keywords
Pig; FcRn; Anti-CSFV; Expression; Polymorphism; Association;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Simister, N., I. E. Jacobowitz, J. Ahouse and C. Story. 1997. New functions of the MHC class I-related Fc receptor, FcRn. Biochem. Soc. Trans. 25:481-486.
2 Simister, N. E. and K. E. Mostov. 1989. An Fc receptor structurally related to MHC class I antigens. Nature 337:184-187.   DOI   ScienceOn
3 Spiekermann, G. M., P. W. Finn, E. S. Ward, J. Dumont, B. L. Dickinson, R. S. Blumberg and W. I. Lencer. 2002. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life. J. Exp. Med. 196:303-310.   DOI
4 Vaccaro, C., J. Zhou, R. J. Ober and E. S. Ward. 2005. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat. Biotechnol. 23:1283-1288.
5 Ward, E. S., J. Zhou, V. Ghetie and R. J. Ober. 2003. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int. Immunol. 15:187-195.   DOI   ScienceOn
6 Petkova, S. B., S. Akilesh, T. J. Sproule, G. J. Christianson, H. Al. Khabbaz, A. C. Brown, L. G. Presta, Y. G. Meng and D. C. Roopenian. 2006. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int. Immunol. 18:1759-1769.   DOI   ScienceOn
7 Praetor, A., I. Ellinger and W. Hunziker. 1999. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J. Cell Sci. 112:2291-2299.
8 Raghavan, M. and P. J. Bjorkman. 1996. Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12:181-220.   DOI   ScienceOn
9 Roberts, D. M., M. Guenthert and R. Rodewald. 1990. Isolation and characterization of the Fc receptor from the fetal yolk sac of the rat. J. Cell Biol. 111:1867-1876.   DOI
10 Roopenian, D. C. and S. Akilesh. 2007. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7:715-725.   DOI   ScienceOn
11 Roopenian, D. C., G. J. Christianson, T. J. Sproule, A. C. Brown, S. Akilesh, N. Jung, S. Petkova, L. Avanessian, E. Y. Choi and D. J. Shaffer. 2003. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J. Immunol. 170:3528-3533.   DOI
12 Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, USA.
13 Hinton, P. R., J. M. Xiong, M .G. Johlfs, M. T. Tang, S. Keller and N. Tsurushita. 2006. An engineered human IgG1 antibody with longer serum half-life. J. Immunol. 176:346-356.   DOI
14 Shah, U., B. L. Dickinson, R. S. Blumberg, N. E. Simister, W. I. Lencer and W. A. Walker. 2003. Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr. Res. 53: 295-301.   DOI   ScienceOn
15 Shields, R. L., A. K. Namenuk, K. Hong, Y. G. Meng, J. Rae, J. Briggs, D. Xie, J. Lai, A. Stadlen and B. Li. 2001. High resolution mapping of the binding site on human IgG1 for Fc$\gamma$RI, Fc$\gamma$RII, Fc$\gamma$RIII, and FcRn and design of IgG1 variants with improved binding to the Fc$\gamma$R. J. Biol. Chem. 276:6591-6604.   DOI   ScienceOn
16 Hinton, P. R., M. G. Johlfs, J. M. Xiong, K. Hanestad, K. C. Ong, C. Bullock, S. Keller, M. T. Tang, J. Y. Tso and M. Vásquez. 2004. Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 279:6213-6216.
17 Israel, E., S. Taylor, Z. Wu, E. Mizoguchi, R. Blumberg, A. Bhan and N. Simister. 1997. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92: 69-74.   DOI
18 Jones, E. A. and T. A. Waldmann. 1972. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J. Clin. Invest. 51:2916-2927.   DOI   ScienceOn
19 Kamei, D. T., B. J. Lao, M. S. Ricci, R. Deshpande, H. Xu, B. Tidor and D. A. Lauffenburger. 2005. Quantitative methods for developing Fc mutants with extended half‐lives. Biotechnol. Bioeng. 92:748-760.   DOI   ScienceOn
20 Kimchi-Sarfaty, C., J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar and M. M. Gottesman. 2007. A" silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315:525-528.   DOI   ScienceOn
21 Borvak, J., J. Richardson, C. Medesan, F. Antohe, C. Radu, M. Simionescu, V. Ghetie and E. S. Ward. 1998. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int. Immunol. 10:1289-1298.   DOI   ScienceOn
22 Mayer, B., Z. Kis, G. Kajan, L. V. Frenyo, L. Hammarstrom and I. Kacskovics. 2004. The neonatal Fc receptor (FcRn) is expressed in the bovine lung. Vet. Immunol. Immunopathol. 98:85-89.   DOI   ScienceOn
23 McCarthy, K. M., Y. Yoong and N. E. Simister. 2000. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J. Cell Sci. 113:1277-1285.
24 Morphis, L. G. and D. Gitlin. 1970. Maturation of the maternofoetal transport system for human $\gamma$-globulin in the mouse. Nature 228:573.
25 Dong, X. N. and Y. H. Chen. 2007. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25:205-230.   DOI   ScienceOn
26 Brambell, F. 1966. The transmission of immunity from mother to young and the catabolism of immunoglobulins. The Lancet 2: 1087-1093.
27 Capon, F., M. H. Allen, M. Ameen, A. D. Burden, D. Tillman, J. N. Barker and R. C. Trembath. 2004. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum. Mol. Genet. 13:2361-2368.   DOI   ScienceOn