• Title/Summary/Keyword: Genome sequences

Search Result 845, Processing Time 0.036 seconds

Microbial Diversity in Korean Traditional Fermenting Starter, Nuruk, Collected in 2013 and 2014

  • Seo, Jeong Ah
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.11-11
    • /
    • 2015
  • A total of sixty-six samples of Nuruk, a fermention starter used to make the Korean traditional rice wine, Makgeolli, were collected from central and southern regions of Korea in 2013 and 2014. We classified two groups of the Nuruk samples, "commercial" and "home-made", according to the manufacturing procedure and purpose of use. Commercial Nuruks were made in a controlled environment where the temperature and humidity are fixed and the final product is supplied to Makgeolli manufacturers. Home-made Nuruks were made under uncontrolled conditions in the naturally opened environment and were intended for use in the production of small amounts of home-brewed Makgeolli. We obtained more than five hundred isolates including filamentous fungi and yeasts from the Nuruk samples followed by identification of fungal species. Also we stored glycerol stocks of each single isolate at $-70^{\circ}C$. We identified the species of each isolate based on the sequences of ITS regions amplified with two different universal primer pairs. We also performed morphological characterization of the filamentous fungi and yeast species through observations under the microscope. We investigated the major fungal species of commercial and home-made Nuruks by counting the colony forming units (CFU) and analyzing the occurrence tendency of fungal species. While commercial Nuruks contained mostly high CFU of yeasts, home-made Nuruks showed relatively high occurrence of filamentous fungi. One of the representative Nuruk manufacturers used both domestic wheat bran and imported ones, mainly from US, as raw material. Depending on the source of ingredient, the fungal diversity was somewhat different. Another commercial Nuruk sample was collected twice, once in 2013 and again in 2014, and showed different diversity of fungal species in each year. Nuruks obtained from the southern regions of Korea and Jeju island showed high frequency of yeast such as Saccharomycopsis fibuligera and Pichia species as well as unique filamentous fungus, Monascus species. S. fibuligera was easily found in many Nuruk samples with high CFU. The major filamentous fungi were Aspergillus, Lichtheimia, Mucor and Penicillium species. In order to further our understanding of the isolates and their potential industrial applications, we assayed three enzymes, alpha amylase, glucoamylase and acid protease from 140 isolates out of about five hundred isolates and selected about 10 excellent strains with high enzyme activities. With these fungal isolates, we will perform omics analyses including genomics, transcriptomics, metabolic pathway analyses, and metabolomics followed by whole genome sequencing of unique isolates associated with the basic research of Nuruk and that also has applications in the Makgeolli making process.

  • PDF

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease

  • Choi, Yu-Mi;Shim, Kye-Sik;Yoon, Kyung-Lim;Han, Mi-Young;Cha, Sung-Ho;Kim, Su-Kang;Jung, Joo-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • Purpose: Transforming growth factor beta receptor 2 ($TGFBR2$) is a tumor suppressor gene that plays a role in the differentiation of striated cells and remodeling of coronary arteries. Single nucleotide polymorphisms (SNPs) of this gene are associated with Marfan syndrome and sudden death in patients with coronary artery disease. Cardiovascular remodeling and T cell activation of $TGFBR2$ gene suggest that the $TGFBR2$ gene SNPs are related to the pathogenesis of Kawasaki disease (KD) and coronary artery lesion (CAL). Methods: The subjects were 105 patients with KD and 500 healthy adults as controls. Mean age of KD group was 32 months age and 26.6% of those had CAL. We selected $TGFBR2$ gene SNPs from serum and performed direct sequencing. Results: The sequences of the eleven SNPs in the $TGFBR2$ gene were compared between the KD group and controls. Three SNPs (rs1495592, rs6550004, rs795430) were associated with development of KD ($P$=0.019, $P$=0.026, $P$=0.016, respectively). One SNP (rs1495592) was associated with CAL in KD group ($P$=0.022). Conclusion: Eleven SNPs in $TGFBR2$ gene were identified at that time the genome wide association. But, with the change of the data base, only six SNPs remained associated with the $TGFBR2$ gene. One of the six SNPs (rs6550004) was associated with development of KD. One SNP associated with CAL (rs1495592) was disassociated from the $TGFBR2$ gene. The other five SNPs were not functionally identified, but these SNPs are notable because the data base is changing. Further studies involving larger group of patients with KD are needed.

Cytological Study of the Introduction of Agrobacterium tumefaciens Spheroplasts into Nicotiana tabacum Protoplasts (Agrobacterium tumefaciens Spheroplast의 연초엽육 Protoplast내 도입에 관한 세포학적 연구)

  • Kim, Jung-Hye;Koo, Yong-Bum;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.2 no.1
    • /
    • pp.175-181
    • /
    • 1985
  • Agrobacterium tumefaciens induces cancerous growths called crown galls at wound sites on dicotyledonous plants. A large plasmid called Ti plasmid is responsible for virulence. Upon tumor induction, part of the plasmid, termed T-DNA, becomes integrated into plant genome and its genetic sequences are expressed. These properties allow Ti plasmids to be used as gene vectors in plants. Several in vitro methods for the transfer of Ti plasmid into plant cell have been developed. One of them is the treatment of bacterial spheroplasts and plant protoplasts mixture with polyethylene glycol that is generally used as fusogen in cell-to-cell fusion. Several workers investigated the interaction of bacterial spheroplasts with plant protoplasts in the presence of polyethylene glycol and suggested that the interaction is not fusion but endocytosis. In this report we observed the interaction of Agrobacterium tumefaciens spheroplasts with Nicotiana tabacum protoplasts by electron microscope. Agrobacterium tumefaciens spheroplasts and Nicotiana tabacum protoplasts were prepared and mixed in the presence of polyethylene glycol and high pH-high $Ca^{2+}$ buffer. Then the interaction of the spheroplasts with the protoplasts was examined by transmission electron microscope. After the treatment of polyethylene glycol the spheroplasts adhered to the surface of the protoplasts and then they were engulfed by the protoplasts. After the high pH-high $Ca^{2+}$ buffer treatment the engulfed spheroplasts lost their cell integrity. No fusion process was observed. Thus all these observations suggest that the introduction process of Agrobacterium tumefaciens spheroplasts into Nicotiana tabacum protoplasts with the aid of polyethylene glycol is endocytosis.

  • PDF

Nucleus-Selective Expression of Laccase Genes in the Dikaryotic Strain of Lentinula edodes

  • Ha, Byeongsuk;Lee, Sieun;Kim, Sinil;Kim, Minseek;Moon, Yoon Jung;Song, Yelin;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.379-384
    • /
    • 2017
  • In mating of Lentinula edodes, dikaryotic strains generated from certain monokaryotic strains such as the B2 used in this study tend to show better quality of fruiting bodies regardless of the mated monokaryotic strains. Unlike B2, dikaryotic strains generated from B16 generally show low yields, with deformed or underdeveloped fruiting bodies. This indicates that the two nuclei in the cytoplasm do not contribute equally to the physiology of dikaryotic L. edodes, suggesting an expression bias in the allelic genes of the two nuclei. To understand the role of each nucleus in dikaryotic strains, we investigated single nucleotide polymorphisms (SNPs) in laccase genes of monokaryotic strains to reveal nuclear origin of the expressed mRNAs in dikaryotic strain. We performed reverse transcription PCR (RT-PCR) analysis using total RNAs extracted from dikaryotic strains (A5B2, A18B2, and A2B16) as well as from compatible monokaryotic strains (A5, A18, and B2 for A5B2 and A18B2; A2 and B16 for A2B16). RT-PCR results revealed that Lcc1, Lcc2, Lcc4, Lcc7, and Lcc10 were the mainly expressed laccase genes in the L. edodes genome. To determine the nuclear origin of these laccase genes, the genomic DNA sequences in monokaryotic strains were analyzed, thereby revealing five SNPs in Lcc4 and two in Lcc7. Subsequent sequence analysis of laccase mRNAs expressed in dikaryotic strains revealed that these were almost exclusively expressed from B2-originated nuclei in A5B2 and A18B2 whereas B16 nucleus did not contribute to laccase expression in A2B16 strain. This suggests that B2 nucleus dominates the expression of allelic genes, thereby governing the physiology of dikaryons.

Genetic Stability of Magnaporthe oryzae during Successive Passages through Rice Plants and on Artificial Medium

  • Park, Sook-Young;Chi, Myoung-Hwan;Milgroom, Michael G.;Kim, Hyo-Jung;Han, Seong-Sook;Kang, Seog-Chan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • Genetic instability of the rice blast fungus Magnaporthe oryzae has been suggested as a major factor underlying the rapid breakdown of host resistance in the field. However, little information is available on the mechanism of genetic instability. In this study, we assessed the stability of repetitive DNA elements and several key phenotypic traits important for pathogenesis after serially transferring two isolates though rice plants and an artificial medium. Using isolate 70-15, we obtained a total of 176 single-spore isolates from 10 successive rounds of culturing on artificial medium. Another 20 isolates were obtained from germ tubes formed at the basal and apical cells of 10 three-celled conidia. Additionally, 60 isolates were obtained from isolate KJ201 after serial transfers through rice plants and an artificial medium. No apparent differences in phenotypes, including mycelial growth, conidial morphologies, conidiation, conidial germination, appressorium formation, and virulence, or in DNA fingerprints using MGR586, MAGGY, Pot2, LINE, MG-SINE and PWL2 as probes were observed among isolates from the same parent isolate. Southern hybridization and sequence analysis of two avirulence genes, AVR-Pita1 and AVR-Pikm, showed that both genes were also maintained stably during 10 successive generations on medium and plants. However, one reversible loss of restriction fragments was found in the telomere-linked helicase gene (TLH1) family, suggesting some telomere regions may be more unstable than the rest of the genome. Taken together, our results suggest that phenotype and genotype of M. oryzae isolates do not noticeably change, at least up to 10 successive generations on a cultural medium and in host plants.

Molecular epidemiological study of norovirus gastroenteritis outbreaks in Gyeonggi-Do from 2014 to 2015 (2014-2015년 경기지역 노로바이러스성 식중독의 분자역학적 특성분석)

  • Nam, Soo-Jung;Park, Po-Hyun;Bang, Sun-Jae;Huh, Jeong-Weon;Yun, Hee-Jeong;Park, Kwang-Hee;Yoon, Mi-Hye
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.24-30
    • /
    • 2018
  • Norovirus infection is a leading cause of nonbacterial gastroenteritis outbreaks. New variants of GII.4 have emerged approximately every 2~3 years and have caused norovirus gastroenteritis pandemics globally. In this study, analysis and molecular genetic characteristics of the norovirus gastroenteritis outbreaks 2,917 samples in Gyeonggi-Do from 2014 to 2015. As a result, 247 samples out of 2,917 samples are positive for norovirus. Norovirus molecular genetic characteristics of the GI 8 types (GI-1, 2, 3, 4, 5, 6, 12, 14), GII 10 types (GII - 2, 3, 4, 5, 6, 11, 12, 14, 16, 17). Genome sequences of isolated noroviruses were similar to those of new GII.17 Kawasaki 2014 variants with 96.6 identity, suggesting that these viruses were imported from overseas. 44% of virus incidence was originated from school meal service. Therefore, a continuous monitoring and school sanitation should be required for preventing a massive virus outbreak.

Biosenesis of Epstein-Barr Virus MicroRNAs in B Cells (B 세포에서 Epstein-Barr virus microRNA들의 전사 및 성숙)

  • Kim Do Nyun;Oh Sang Taek;Lee Jae Myun;Lee Won-Keun;Lee Suk Kyeong
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.909-915
    • /
    • 2005
  • We investigated microRNA (miRNA) biogenesis of Epstein-Barr virus (EBV) which is the first virus shown to produce viral miRNAs. As expected, expression of all the reported EBV miRNAs were detected by Northen blot in an EBV-infected B cell line, B95-8; BHRF1-1, BHIU1-2, BHRF1-3, BART1, and BART2. The putative EBV pri-miRWAs and pre-miRNAs predicted from the known mature EBV miRNA sequences were detected by RT-PCR in B95-8 cells. Many animal miRNA genes exist as clusters of 2-7 genes and they are expressed polycistronically. As the EBV miRNAs are clustered in two regions of the EBV genome, we examined whether these clustered EBV miRNA genes are also expressed polycistronically. A long polycistronic transcript with the expected size (1602 bp) corresponding to the BHRF1-1~BHRF1-2~BHRF1-3 was amplified. However, any polycistronic transcript containing both BART1 and BART2 was detectable in B95-8. These results suggest that EBV miRNAs may be processed in a similar way with animal miRNAs and that some of the clustered EBV miRNAs can be transcribed polycistronically.

Genetic diversity and population structure among accessions of Perilla frutescens (L.) Britton in East Asia using new developed microsatellite markers

  • Sa, Kyu Jin;Choi, Ik?Young;Park, Kyong?Cheul;Lee, Ju Kyong
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1319-1329
    • /
    • 2018
  • SSRs were successfully isolated from the Perilla crop in our current study, and used to analyze Perilla accessions from East Asia. Analyses of the clear genetic diversity and relationship for Perilla crop still remain insufficient. In this study, 40 new simple sequence repeat (SSR) primer sets were developed from RNA sequences using transcriptome analysis. These new SSR markers were applied to analyze the diversity, relationships, and population structure among 35 accessions of the two cultivated types of Perilla crop and their weedy types. A total of 220 alleles were identified at all loci, with an average of 5.5 alleles per locus and a range between 2 and 10 alleles per locus. The MAF (major allele frequency) per locus varied from 0.229 to 0.943, with an average of 0.466. The average polymorphic information content (PIC) value was 0.603, ranging from 0.102 to 0.837. The genetic diversity (GD) ranged from 0.108 to 0.854, with an average of 0.654. Based on population structure analysis, all accessions were divided into three groups: Group I, Group II and the admixed group. This study demonstrated the utility of new SSR analysis for the study of genetic diversity and population structure among 35 Perilla accessions. The GD of each locus for accessions of cultivated var. frutescens, weedy var. frutescens, cultivated var. crispa, and weedy var. crispa were 0.415, 0.606, 0.308, and 0.480, respectively. Both weedy accessions exhibited higher GD and PIC values than their cultivated types in East Asia. The new SSR primers of Perilla species reported in this study may provide potential genetic markers for population genetics to enhance our understanding of the genetic diversity, genetic relationship and population structure of the cultivated and weedy types of P. frutescens in East Asia. In addition, new Perilla SSR primers developed from RNA-seq can be used in the future for cultivar identification, conservation of Perilla germplasm resources, genome mapping and tagging of important genes/QTLs for Perilla breeding programs.

Development of SSLP Marker Targeted to P34 Null Gene in Soybean (콩 P34 단백질 결핍 유전자를 이용한 SSLP 마커 개발)

  • Yang, Kiwoung;Ko, Jong-Min;Lee, Young-Hoon;Jeon, Myeong Gi;Jung, Chan-Sik;Baek, In-Youl;Kim, Hyun-Tae;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.502-506
    • /
    • 2010
  • Soybean seed possesses about 15 allergenic proteins recognized by IgEs from soy-sensitive human. The allergenic impact of soybean proteins limit its extensive usage in a broad range of processed foods. Soybean protein P34 or Gly m Bd 30k of the cysteine protease family is one of the major allergen of the soybean seed. P34-null soybean, PI567476, was identified among soybean (Glycine max & Glycine soja Sieb. and Zucc) of approximately 16,226 accessions from USDA soybean germplasm screened. Also, for P34 gene (Williams 82; whole genome sequence cultivar) and P34 null gene (PI567476) comparative analysis of sequences listed in the NCBI database showed the presence of a SSLP (Simple Sequence Length Polymorphism) of 4 base pair. So, a SSLP marker was designed to reveal the polymorphism of the locus. In this study, a population of 339 $F_2$ recombinant inbred lines generated by cross between Taekwang (Glycine max) and PI567476 was used to select $F_{2:3}$ plant of a P34 null gene. The result separation rate Taekwang type, heterozygous type and PI567476 type were shown in 85: 187: 67 since single gene is concerned in as the separation rate of 1:2:1 in $X^2{_{0.05}}=5.99$, df=2. In future, selected plant will identify protein level, whether P34 null protein is equal to P34 null gene.