• Title/Summary/Keyword: Genetic programming

Search Result 386, Processing Time 0.025 seconds

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Parameter Optimization for Runoff Calibration of SWMM (SWMM의 유출량 보정을 위한 매개변수 최적화)

  • Cho, Jae-Heon;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

Nonlinear modeling of shear strength of SFRC beams using linear genetic programming

  • Gandomi, A.H.;Alavi, A.H.;Yun, G.J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.1-25
    • /
    • 2011
  • A new nonlinear model was developed to evaluate the shear resistance of steel fiber-reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected after developing and controlling several models with different combinations of the influencing parameters. The models were developed using a comprehensive database containing 213 test results of SFRC beams without stirrups obtained through an extensive literature review. The database includes experimental results for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was employed to estimate the shear strength of a part of test results that were not included in the modeling process. The external validation of the model was further verified using several statistical criteria recommended by researchers. The contributions of the parameters affecting the shear strength were evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of the shear strength of SFRCB. The prediction performance of the model is significantly better than several solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful for pre-design applications.

Optimization of the Growth Rate of Probiotics in Fermented Milk Using Genetic Algorithms and Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.894-902
    • /
    • 2003
  • Prebiotics (peptides, N-acetyglucoamine, fructo-oligosaccharides, isomalto-oligosaccharides and galactooligosaccharides) were added to skim milk in order to improve the growth rate of contained Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium longum and Bifidobacterium bifidum. The purpose of this research was to study the potential synergy between probiotics and prebiotics when present in milk, and to apply modern optimization techniques to obtain optimal design and performance for the growth rate of the probiotics using a response surface-modeling technique. To carry out response surface modeling, the regression method was performed on experimental results to build mathematical models. The models were then formulated as an objective function in an optimization problem that was consequently optimized using a genetic algorithm and sequential quadratic programming approach to obtain the maximum growth rate of the probiotics. The results showed that the quadratic models appeared to have the most accurate response surface fit. Both SQP and GA were able to identify the optimal combination of prebiotics to stimulate the growth of probiotics in milk. Comparing both methods, SQP appeared to be more efficient than GA at such a task.

Determination of natural periods of vibration using genetic programming

  • Joshi, Shardul G.;Londhe, Shreenivas N.;Kwatra, Naveen
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.201-216
    • /
    • 2014
  • Many building codes use the empirical equation to determine fundamental period of vibration where in effect of length, width and the stiffness of the building is not explicitly accounted for. Also the equation, estimates the fundamental period of vibration with large safety margin beyond certain height of the building. An attempt is made to arrive at the simple empirical equations for fundamental period of vibration with adequate safety margin, using soft computing technique of Genetic Programming (GP). In the present study, GP models are developed in four categories, varying the number of input parameters in each category. Input parameters are chosen to represent mass, stiffness and geometry of the buildings directly or indirectly. Total numbers of 206 buildings are analyzed out of which, data set of 142 buildings is used to develop these models. It is observed that GP models developed under B and C category yield the same equation for fundamental period of vibration along X direction as well as along Y direction whereas the equation of fundamental period of vibration along X direction and along Y direction is of the same form for category D. The equations obtained as an output of GP models clearly indicate the influence of mass, geometry and stiffness of the building over fundamental period of vibration. These equations are then compared with the equation recommended by other researcher.

Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming

  • Golafshani, Emadaldin Mohammadi;Rahai, Alireza;Kebria, Seyedeh Somayeh Hosseini
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents the application of multi-gene genetic programming (MGP) technique for modeling the bond strength of ribbed steel bars in concrete. In this regard, the experimental data of 264 splice beam tests from different technical papers were used for training, validating and testing the model. Seven basic parameters affecting on the bond strength of steel bars were selected as input parameters. These parameters are diameter, relative rib area and yield strength of steel bar, minimum concrete cover to bar diameter ratio, splice length to bar diameter ratio, concrete compressive strength and transverse reinforcement index. The results show that the proposed MGP model can be alternative approach for predicting the bond strength of ribbed steel bars in concrete. Moreover, the performance of the developed model was compared with the building codes' empirical equations for a complete comparison. The study concludes that the proposed MGP model predicts the bond strength of ribbed steel bars better than the existing building codes' equations. Using the proposed MGP model and building codes' equations, a parametric study was also conducted to investigate the trend of the input variables on the bond strength of ribbed steel bars in concrete.

Prediction of Time Histories of Seismic Ground Motion using Genetic Programming

  • YOSHIHARA, Ikuo;Inaba, Masaaki;AOYAMA, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.226-229
    • /
    • 1999
  • We have been developing a method to build models for time series using Genetic Programming. The proposed method has been applied to various kinds of time series e.g. computer-generated chaos, natural phenomena, and financial market indices etc. Now we apply the prediction method to time histories of seismic ground motion i.e. one-step-ahead prediction of seismographic amplitude. Waves of earthquakes are composed of P-waves and S-waves. They propagate in different speeds and have different characteristics. It is believed that P-waves arrive firstly and S-waves arrive secondly. Simulations were performed based on real data of Hyuganada earthquake which broke out at southern part of Kyushuu Island in Japan. To our surprise, prediction model built using the earthquake waves in early time can enough precisely predict main huge waves in later time. Lots of experiments lead us to conclude that every slice of data involves P-wave and S-wave. The simulation results suggest the GP-based prediction method can be utilized in alarm systems or dispatch systems in an emergency.

  • PDF

Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding (조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발)

  • Lee, Kyung-Ho;Yang, Young-Soon;Oh, June;Park, Jong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF

Prediction of creep in concrete using genetic programming hybridized with ANN

  • Hodhod, Osama A.;Said, Tamer E.;Ataya, Abdulaziz M.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.513-523
    • /
    • 2018
  • Time dependent strain due to creep is a significant factor in structural design. Multi-gene genetic programming (MGGP) and artificial neural network (ANN) are used to develop two models for prediction of creep compliance in concrete. The first model was developed by MGGP technique and the second model by hybridized MGGP-ANN. In the MGGP-ANN, the ANN is working in parallel with MGGP to predict errors in MGGP model. A total of 187 experimental data sets that contain 4242 data points are filtered from the NU-ITI database. These data are used in developing the MGGP and MGGP-ANN models. These models contain six input variables which are: average compressive strength at 28 days, relative humidity, volume to surface ratio, cement type, age at start of loading and age at the creep measurement. Practical equation based on MGGP was developed. A parametric study carried out with a group of hypothetical data generated among the range of data used to check the generalization ability of MGGP and MGGP-ANN models. To confirm validity of MGGP and MGGP-ANN models; two creep prediction code models (ACI209 and CEB), two empirical models (B3 and GL 2000) are used to compare their results with NU-ITI database.

Multiple Sequence Aligmnent Genetic Algorithm (진화 알고리즘을 사용한 복수 염기서열 정렬)

  • Kim, Jin;Song, Min-Dong;Choi, Hong-Sik;Chang, Yeon-Ah
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 1999
  • Multiple Sequence Alignment of DNA and protem sequences is a imnport'mt tool in the study of molecular evolution, gene regulation. and prolein suucture-function relationships. Progressive pairwise alignment method generates multiple sequence alignment fast but not necessarily with optimal costs. Dynamic programming generates multiple sequence alig~~menl with optimal costs in most cases but long execution time. In this paper. we suggest genetlc algorithm lo improve the multiple sequence alignment generated from the cnlent methods, describe the design of the genetic algorithm, and compare the multiple sequence alignments from 0111 method and current methods.

  • PDF