References
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. https://doi.org/10.12989/cac.2016.18.2.155
- Abed, M. and Osman, S. (2013), "Dynamic versus static artificial neural network model for masonry creep deformation", Proceedings of the Institution of Civil Engineers Structures and Buildings, 355-366.
- Abed, M., El-Shafie, A. and Osman, S. (2010), "Creep predicting model in masonry structure utilizing dynamic neural network", J. Comput. Sci., 6(5), 597-605. https://doi.org/10.3844/jcssp.2010.597.605
- ACI-Committee209 (2008), Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (ACI 209.2R-08), American Concrete Institute, Farmington Hills, MI.
- Ao, S., Castillo, O. and Hang, X. (2011), Intelligent Control and Computer Engineering, Springer Netherlands.
- Bal, L. and Buyle-bodin, F. (2014), "Artificial neural network for predicting creep of concrete", Neur. Comput. Appl., 25(6), 1359-1367. https://doi.org/10.1007/s00521-014-1623-z
- Bazant, Z.P. (1982), Mathematical Models for Creep and Shrinkage of Concrete, Creep and Shrink age in Concrete Structures, Wittmann, John Wiley & Sons Ltd.
- Bazant, Z.P. and Baweja, S. (2000), "Creep and shrinkage prediction model for analysis and design of concrete structures: model B3", The Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects, SP-194, Ed. A. Al-Manaseer, American Concrete Institute, Farmington Hills, MI.
- Bazant, Z.P. and Li, G.H. (2008), "Comprehensive database on concrete creep and shrinkage", Aci. Mater. J., 105(6), 635-637.
- Bazant, Z.P. and Panula, L. (1978), "Practical prediction of time dependent deformations of concrete", Mater. Struct., 11(5), 307-316.
- Branson, D.E. and Christiason, M.L. (1971), "Time-dependent concrete properties related to design-strength and elastic properties, creep, and shrinkage designing for effects of creep, shrinkage, and temperature in concrete structures", SP-27, American Concrete Institute, 257-277.
- CEB (1999), Structural Concrete-Textbook on Behaviour, Design and Performance, Updated Knowledge of the CEB/FIP Model Code 1990, fib Bulletin2, Federation Internationale du Beton, Lausanne, Switzerland, 2, 37-52.
- Cladera, A., Perez-Ordonez, J.L. and Martinez-Abella, F. (2014), "Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming", Comput. Concrete, 14(4), 479-501. https://doi.org/10.12989/cac.2014.14.4.479
- Fanourakis, G.C. and Ballim, Y. (2003), "Predicting creep deformation of concrete: a comparison of results from different investigations", Proceedings of the 11th FIG Symposium on Deformation Measurements, Santorini, Greece.
- Fulcher, J. and Lakhmi, C.J. (2008), Computational Intelligence: A Compendium, Springer-Verlag Berlin Heidelberg.
- Gandomi, A.H., Sajedi, S., Kiani, B. and Huang, Q.D. (2016), "Genetic programming for experimental big data mining: A case study on concrete creep formulation", Auto. Constr., 70, 89-97. https://doi.org/10.1016/j.autcon.2016.06.010
- Gardner, N.J. (2004), "Comparison of prediction provisions for drying shrinkage and creep of normal-strength concretes", Can. J. Civil Eng., 31(5), 767-775. https://doi.org/10.1139/l04-046
- Golafshani, E.M., Rahai, A. and Kebria, S.S.H. (2014), "Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming", Comput. Concrete, 14(3), 327-345. https://doi.org/10.12989/cac.2014.14.3.327
- Hakin, S. (1999), NEURAL NETWORKS A Comprehensive Foundation, Prentice Hall International, Inc.
- Holland, J. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA.
- Karthikeyan, J., Upadhyay, A. and Bhandari, N.M. (2008), "Artificial neural network for prediction creep and shrinkage of high performance concrete", J. Adv. Concrete Technol., 6(1), 135-142. https://doi.org/10.3151/jact.6.135
- Klovanych, S. (2015), "Creep of concrete at variable stresses and heating", Comput. Concrete, 16(6), 897-907. https://doi.org/10.12989/cac.2015.16.6.897
- Lozano-Galant, J.A. and Turmo, J. (2014), "Creep and shrinkage effects in service stresses of concrete cable-stayed bridges", Comput. Concrete, 13(4), 483-499. https://doi.org/10.12989/cac.2014.13.4.483
- MathWorks (2015), "Matlab-help", http://www.mathworks.com/help/nnet/ug/choose-neuralnetwork-input-outputprocessing-functions.html.
- Muduli, P.K. and Das, S.K. (2013), "CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach", Indi. Geotech. J., 44(1), 86-93. https://doi.org/10.1007/s40098-013-0048-4
- Negnevitsky, M. (2005), Artificial Intelligence A Guide to Intelligent Systems, Addison-Wesley.
- Searson, D. (2014), "GPTIPS symbolic data mining platform for MATLAB", https://sites.google.com/site/gptips4matlab/7.
- Searson, D.P. (2009), GPTIPS: Genetic Programming & Symbolic Regression for MATLAB, User Guide.
- Searson, D.P., Leahy, D.E. and Willis, M.J. (2010), "GPTIPS: An open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International Multi Conference of Engineers and Computer Scientists, 1, Citeseer.
- Shahin, M.A., Jaska, M.B. and Maier, H.R. (2003), "Application of artificial neural networks in foundation engineering", Australian Geomechanics.
- Shukla, A., Tiwari, R. and Kala, R. (2010), Towards Hybrid and Adaptive Computing, Springer-Verlag Berlin Heidelberg.
- Taha, M.M.R., Noureldin, A., Ei-Sheimy, N. and Shrive, N.G. (2003), "Artificial neural networks for predicting creep with an example application to structural masonry", Can. J. Civil Eng., 30(3), 523-532. https://doi.org/10.1139/l03-003
- Taylor, B.J. (2006), Methods and Procedures for the Verification and Validation of Artificial Neural Networks, Springer US.
Cited by
- Prediction model for concrete carbonation depth using gene expression programming vol.26, pp.6, 2018, https://doi.org/10.12989/cac.2020.26.6.497
- Strength and strain modeling of CFRP -confined concrete cylinders using ANNs vol.27, pp.3, 2018, https://doi.org/10.12989/cac.2021.27.3.225
- A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach vol.27, pp.4, 2018, https://doi.org/10.12989/cac.2021.27.4.333