• Title/Summary/Keyword: Genes related growth

Search Result 552, Processing Time 0.032 seconds

Endogenous Nitric Oxide Strengthens Doxorubicin-induced Apoptosis in Human Colorectal Cell Lines (Doxorubicin에 의한 내인성 산화질소가 인간 대장암 세포주에서의 세포사멸에 미치는 효과)

  • Im, Soon Jae;Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1137-1143
    • /
    • 2014
  • Doxorubicin is a general chemotherapy drug widely used for a number of cancers. However, the correlation between endogenous nitric oxide ($NO^{\bullet}$) levels and chemoresistance to doxorubicin remains unclear. In this study, we investigated the effect of endogenous $NO^{\bullet}$ on the anticancer activity of doxorubicin in human colon cancer cell lines HCT116 and HT29 with different p53 status. The cells were treated with either doxorubicin alone or in combination with the $NO^{\bullet}$ synthase (NOS) inhibitor $N^G$-monomethyl-L-arginine (NMA). Doxorubicin differentially inhibited the growth of both the HCT116 (p53-WT) and HT29 (p53-MUT) cells, which was mitigated by cotreatment with NMA. Further studies revealed that inhibition of endogenous $NO^{\bullet}$ mitigated doxorubicin-induced apoptosis in the HCT116 and HT29 cells, as evidenced by apoptotic DNA fragmentation and the sub-G1 peak of apoptotic markers. Apoptosis was delayed in the HT29 cells, and its magnitude was greatly reduced, underscoring the importance of the modulation of p53 in the response. RT-PCR analysis revealed that doxorubicin down-regulated levels of inhibitors of the apoptosis family (cellular IAP-1 and-2). Collectively, these data show that induction of apoptosis by doxorubicin in human colon cancer cells is possibly related to modulation of endogenous $NO^{\bullet}$, the expression of the IAP family of genes, and the status of p53. The underlying mechanisms may represent potential targets for adjuvant strategies to improve the efficacy of chemotherapy for colon cancer.

Effect of GM-CSF on Porcine Parthenotes Development (GM-CSF가 돼지 처녀 생식 배아 발달에 미치는 영향)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.365-370
    • /
    • 2015
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor and immune modulator. The aim of this study was to evaluate the effects of GM-CSF on the development and cell number of porcine parthenotes, as well as on their expression of implantation-related genes. In the present study, porcine parthenogenatic activated embryos were cultured in a protein-free culture medium in the absence or presence of 5, 10 and 20 ng/ml GM-CSF for 7 days. The percentage of blastocyst formation, total cell number and gene expressions were evaluated. The results showed that the addition of 20 ng/ml GM-CSF to protein-free culture medium significantly increased the blastocoel formation ($26.14{\pm}2.03%$ vs. $3.55{\pm}0.51%$, p < 0.05). In addition, the cell number also increased when they were cultured in the presence of 20 ng/ml GM-CSF ($43.51{\pm}3.6%$ vs. $30.68{\pm}5.51%$, p < 0.05). A real time reverse transcripts polymerase chain reaction (RT-PCR) showed that GM-CSF enhances mRNA expression of the interleukin-6, but does not influence the leukemia inhibitory factor (LIF) receptor mRNA expression in blastocyst stage parthenotes. These results suggest that GM-CSF may enhance the viability of porcine embryos developing in vitro in a defined culture medium.

Post-cancer Treatment with Condurango 30C Shows Amelioration of Benzo[a]pyrene-induced Lung Cancer in Rats Through the Molecular Pathway of Caspase-3-mediated Apoptosis Induction -Anti-lung cancer potential of Condurango 30C in rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Bishayee, Kausik;Paul, Avijit;Saha, Santu Kumar;Ghosh, Samrat;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • Objectives: The present investigation aimed at examining if post-cancer treatment with a potentized homeopathic drug, Condurango 30C, which is generally used to treat oesophageal cancer, could also show an ameliorating effect through apoptosis induction on lung cancer induced by benzo[a]pyrene (BaP) in white rats (Rattus norvegicus). Methods: Lung cancer was induced after four months by chronic feeding of BaP to rats through gavage at a dose of 50 mg/kg body weight for one month. After four months, the lung-cancer-bearing rats were treated with Condurango 30C for the next one ($5^{th}$), two ($5^{th}-6^{th}$) and three ($5^{th}-7^{th}$) months, respectively, and were sacrificed at the corresponding time-points. The ameliorating effect, if any, after Condurango 30C treatment for the various periods was evaluated by using protocols such as histology, scanning electron microscopy (SEM), annexinV-FITC/PI assay, flow cytometry of the apoptosis marker, DNA fragmentation, reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blot analyses of lung tissue samples. Results: Striking recovery of lung tissue to a near normal status was noticed after post-cancerous drug treatment, as evidenced by SEM and histology, especially after one and two months of drug treatment. Data from the annexinV-FITC/PI and DNA fragmentation assays revealed that Condurango 30C could induce apoptosis in cancer cells after post-cancer treatment. A critical analysis of signalling cascade, evidenced through a RT-PCR study, demonstrated up-regulation and down-regulation of different pro- and anti-apoptotic genes, respectively, related to a caspase-3-mediated apoptotic pathway, which was especially discernible after one-month and two-month drug treatments. Correspondingly, Western blot and immunohistochemistry studies confirmed the ameliorative potential of Condurango 30C by its ability to down-regulate the elevated epidermal growth factor receptor (EGFR) expression, a hallmark of lung cancer. Conclusion: The overall result validated a positive effect of Condurango 30C in ameliorating lung cancer through caspase-3-mediated apoptosis induction and EGFR down-regulation.

Antimicrobial and Biogenic Amine-Degrading Activity of Bacillus licheniformis SCK B11 Isolated from Traditionally Fermented Red Pepper Paste (전통고추장에서 유해균 억제 및 Biogenic Amines 분해 능력을 가지는 Bacillus licheniformis SCK B11의 분리)

  • Kim, Yong-Sang;Jeong, Jin-Oh;Cho, Sung-Ho;Jeong, Do-Yeon;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • In order to inhibit the growth of pathogens and degrade biogenic amines during the fermentation of soybean products, an isolate with antimicrobial activity against pathogens and biogenic amine-degrading property was obtained from 83 traditionally fermented soybean products. The morphological and biochemical tests and the phylogenetic relationship among 16S rRNA gene sequences indicated that the isolate named as the strain SCK B11 was most closely related to Bacillus licheniformis. The cell-free supernatant of two day cultures was active against several pathogens including Enterococcus faecalis, Listeria monocytosis, Micrococcus luteus, Pseudomonas aeruginosa, Bacillus cereus, and Staphylococcus aureus. PCR analysis was conducted to determine relatedness to antimicrobial lantibiotics and biosurfactants produced by Bacillus spp., but showed negative for the genes encoding surfactin, lichenysin, and lichenicidine. Electron microscopic observation indicated that the antimicrobial agent seemed to attack the membrane of the pathogens, leaving the ghost or shrunken cells. The strain was found to degrade histamine by 72% and tyramine by 66% in the cooked soybean containing 5.3% of biogenic amine over 10 days of fermentation time. The use of selected strain would be a potential control measure in manufacturing traditionally fermented soybean products that are difficult to control pathogens and biogenic amine levels.

Effects of Different Kinds of Salt in the Comutagenicity and Growth of Cancer Cells (소금의 보돌연변이 및 암세포성장억제 효과)

  • Zhao, Xin;Kim, So-Hee;Qi, Yongcai;Kim, So-Young;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Purified salt and several different types of sea salts showed comutagenicity in the presence of MNNG (N-methyl-N'-nitro-N-nitrosoguanidine). However, the salts exhibited anti-cancer effects in HCT-116 human colon carcinoma cells and AGS human gastric adenocarcinoma cells. Sea salt showed less comutagenicity effects than purified salt. French sea salt (Salines de Guerande) and Korean sea salt I, which contained higher levels of minerals, showed less comutagenicity. In MTT assay, when HCT-116 and AGS cancer cells were treated with the salts, French sea salt (36% and 34%) and Korean sea salt I (35% and 33%) showed higher anticancer activities than Spanish sea salt (33% and 31%), Italian sea salt (29% and 27%), Korean sea salt II (22% and 22%), or purified salt (18% and 15%) at a salt concentration of 1%. French sea salt and Korean sea salt I also showed better anticancer activities than the other salt samples at a low concentration of 0.5% (p<0.05). Apoptosis related genes of Bax and Bcl-2 were regulated by the treatment of the salt in the colon cancer cells. French sea salt and Korean sea salt I especially increased Bax mRNA expression, but decreased Bcl-2 expression, indicating that they can induce apoptosis of the cancer cells. From the experimental results, sea salt showed better health functional effects than the purified salt, and French sea salt and Korean sea salt I which contained high levels of Ca, K, and Mg showed better effects.

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity

  • Jo, Youn Sook;Park, Hye Bin;Kim, Ji Yun;Choi, Seong Min;Lee, Da Sol;Kim, Do Hoon;Lee, Young Hee;Park, Chang-Jin;Jeun, Yong-Chull;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.335-345
    • /
    • 2020
  • Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA

  • Sun, Chao;Hou, Zengmiao;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.576-583
    • /
    • 2009
  • G protein-coupled receptor 43 (GPR43) is a newly-discovered short-chain free fatty acid receptor and its functions remain to be defined. The objective of this study was to investigate the function of GPR43 on lipolysis. We successfully cloned the GPR43 gene from the pig (EU122439), and measured the level of GPR43 mRNA in different tissues and primary pig adipocytes. The expression level of GPR43 mRNA was higher in adipose tissue and increased gradually with adipocyte differentiation. Then we examined GPR43 mRNA level in different types, growth-stages and various regions of adipose tissue of pigs. The results showed that the expression level of GPR43 mRNA was significantly higher in adipose tissue of obese pigs than in lean pigs, and the expression level also gradually increased as age increased. We further found that the abundance of GPR43 mRNA level increased more in subcutaneous fat than visceral fat. Thereafter, we studied the correlation between GPR43 and lipid metabolism-related genes in adipose tissue and primary pig adipocytes. GPR43 gene had significant negative correlation with hormone-sensitive lipase gene (HSL, r = -0.881, p<0.01) and triacylglycerol hydrolase gene (TGH, r = -0.848, p<0.01) in adipose tissue, and had positive correlation with peroxisome proliferator-activated receptor $\gamma$ gene ($PPAR_{\gamma}$, r = 0.809, p<0.01) and lipoprotein lipase gene (LPL, r = 0.847, p<0.01) in adipocytes. In addition, we fed different concentrations of docosahexaenoic acid (DHA) to mice, and analyzed expression level changes of GPR43, HSL and TGH in adipose. The results showed that DHA down-regulated GPR43 and up-regulated HSL and TGH mRNA levels; GPR43 also had significant negative correlation with HSL (low: r = -0.762, p<0.01; high: r = -0.838, p<0.01) and TGH (low: r = -0.736, p<0.01; high: r = -0.586, p<0.01). Our results suggested that GPR43 is a potential factor which regulates lipolysis in adipose tissue, and DHA as a receptor of GPR43 might promote lipolysis through down-regulating the expression of GPR43 mRNA.

Overexpression of an oligopeptide transporter gene enhances heat tolerance in transgenic rice (Oligopeptide transporter 관여 유전자 도입 형질전환벼의 고온스트레스 내성 증진)

  • Jeong, Eun-Ju;Song, Jae-Young;Yu, Dal-A;Kim, Me-Sun;Jung, Yu-Jin;Kang, Kwon Kyoo;Park, Soo-Chul;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Rice (Oryza sativa) cultivars show an impairment of growth and development in response to abiotic stresses such as drought, salinity, heat and cold at the early seedling stage. The tolerance to heat stress in plants has been genetically modulated by the overexpression of heat shock transcription factor genes or proteins. In addition to a high temperature-tolerance that has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. To examine the heat tolerance in transgenic rice plants, three OsOPT10 overexpressing lines were characterized through a physiological analysis, which examined factors such as the electrolyte leakage (EL), soluble sugar and proline contents. We further functionally characterized the OsOPT10 gene and found that heat induced the expression of OsOPT10 and P5CS gene related proline biosynthesis. It has been suggested that the expression of OsOPT10 led to elevated heat tolerance in transgenic lines.