Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2020.0113

Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity  

Jo, Youn Sook (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Park, Hye Bin (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Ji Yun (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Choi, Seong Min (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Lee, Da Sol (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Do Hoon (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Park, Chang-Jin (Department of Bioresources Engineering, Sejong University)
Jeun, Yong-Chull (College of Applied Life Science, Faculty of Bioscience and Industry, The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University)
Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Publication Information
The Plant Pathology Journal / v.36, no.4, 2020 , pp. 335-345 More about this Journal
Abstract
Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.
Keywords
Botrytis cinerea; eco-friendly; fungicidal; menadione sodium bisulfite; plant defence; tomato grey mould;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Botanga, C. J., Bethke, G., Chen, Z., Gallie, D. R., Fiehn, O. and Glazebrook, J. 2012. Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Mol. Plant-Microbe Interact. 25:1628-1638.   DOI
2 Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl 62:793-803.   DOI
3 Carisse, O. and Van der Heyden, H. 2015. Relationship of airborne Botrytis cinerea conidium concentration to tomato flower and stem infections: a threshold for de-leafing operations. Plant Dis. 99:137-142.   DOI
4 Chen, X., Wang, Y., Gao, Y., Gao, T. and Zhang, D. 2019. Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. Plant Pathol. J. 35:425-436.   DOI
5 Pietrowska, E., Rożalska, S., Kaźmierczak, A., Nawrocka, J. and Malolepsza, U. 2015. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures - Botrytis cinerea interaction. Protoplasma 252:307-319.   DOI
6 Petrasch, S., Knapp, S. J., van Kan, J. A. L. and Blanco-Ulate, B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 20:877-892.   DOI
7 Puthoff, D. P., Holzer, F. M., Perring, T. M. and Walling, L. L. 2010. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J. Chem. Ecol. 36:1271-1285.   DOI
8 Rossi, F. R., Krapp, A. R., Bisaro, F., Maiale, S. J., Pieckenstain, F. L. and Carrillo, N. 2017. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J. 92:761-773.   DOI
9 Saito, S., Michailides, T. J. and Xiao, C. L. 2019. Fungicideresistant phenotypes in Botrytis cinerea populations and their impact on control of gray mold on stored table grapes in California. Eur. J. Plant Pathol. 154:203-213.   DOI
10 Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactoneproducing rhizosphere bacteria. Plant Cell Environ. 29:909-918.   DOI
11 Elad, Y. 1990. Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol. Mol. Plant Pathol. 36:277-287.   DOI
12 Diaz, J., ten Have, A. and van Kan, J. A. L. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129:1341-1351.   DOI
13 Du, M., Zhao, J., Tzeng, D. T. W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., Wang, Q., Chen, Q., Zhong, S., Li, C.-B. and Li, C. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonatemediated plant immunity in tomato. Plant Cell 29:1883-1906.   DOI
14 Egan, M. J., Wang, Z.-Y., Jones, M. A., Smirnoff, N. and Talbot, N. J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. U. S. A. 104:11772-11777.   DOI
15 Gao, P., Qin, J., Li, D. and Zhou, S. 2018. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS ONE 13:e0190932.   DOI
16 Elad, Y., Kohl, J. and Fokkema, N. J. 1994. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur. J. Plant Pathol. 100:315-336.   DOI
17 El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., Vojnov, A. and Bouarab, K. 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405-2421.   DOI
18 Fan, F., Li, N., Li, G. Q. and Luo, C. X. 2016. Occurrence of fungicide resistance in Botrytis cinerea from greenhouse tomato in Hubei province, China. Plant Dis. 100:2414-2421.   DOI
19 Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757.   DOI
20 Sivakumaran, A., Akinyemi, A., Mandon, J., Cristescu, S. M., Hall, M. A., Harren, F. J. M. and Mur, L. A. J. 2016. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence $H_2O_2$ generation and increase host susceptibility. Front. Plant Sci. 7:709.
21 Soylu, E. M., Kurt, S. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 143:183-189.   DOI
22 Spotts, R. A., Wallis, K. M., Serdani, M., O'Gorman, D. T. and Sholberg, P. L. 2008. Methodology for determining relationships between inoculum concentration of Botrytis cinerea and Penicillium expansum and stem end decay of pear fruit. Plant Dis. 92:451-455.   DOI
23 Steel, C. C., Blackman, J. W. and Schmidtke, L. M. 2013. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 61:5189-5206.   DOI
24 Sung, C. H. and Hong, J. K. 2010. Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. Plant Biotechnol. Rep. 4:243-251.   DOI
25 Tornero, P., Conejero, V. and Vera, P. 1994. A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Mol. Gen. Genet. 243:47-53.   DOI
26 Tornero, P., Gadea, J., Conejero, V. and Vera, P. 1997. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol. Plant-Microbe Interact. 10:624-634.   DOI
27 Utkhede, R. S. and Mathur, S. 2006. Preventive and curative biological treatments for control of Botrytis cinerea stem canker of greenhouse tomatoes. BioControl 51:363-373.   DOI
28 Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H., Chang, S. W. and Park, C.-J. 2018. Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Res. Plant Dis. 24:292-301.   DOI
29 Harel, T. M., Mehari, Z. H., Rav-David, D. and Elad, Y. 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150-157.   DOI
30 Herrera-Tellez, V. I., Cruz-Olmedo, A. K., Plasencia, J., Gavilanes-Ruiz, M., Arce-Cervantes, O., Hernandez-Leon, S. and Saucedo-Garcia, M. 2019. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 20:2007.   DOI
31 Jimenez-Arias, D., Borges, A. A., Luis, J. C., Valdes, F., Sandalio, L. M. and Perez, J. A. 2015a. Priming effect of menadione sodium bisulphite against salinity stress in Arabidopsis involves epigenetic changes in genes controlling proline metabolism. Environ. Exp. Bot. 120:23-30.   DOI
32 Ahn, I.-P., Kim, S. and Lee, Y.-H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515.   DOI
33 Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. and Hofte, M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144:1863-1877.   DOI
34 Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J. and Chang, S. W. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32:469-480.   DOI
35 Houben, M. and Van de Poel, B. 2019. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front. Plant Sci. 10:695.   DOI
36 Jacometti, M. A., Wratten, S. D. and Walter, M. 2010. Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res. 16:154-172.   DOI
37 Jimenez-Arias, D., Perez, J. A., Luis, J. C., Martin-Rodriguez, V., Valdes-Gonzalez, F. and Borges, A. A. 2015b. Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation. Environ. Exp. Bot. 109:23-30.   DOI
38 Yu, P.-L., Chen, L.-H. and Chung, K.-R. 2016. How the pathogenic fungus Alternaria alternata copes with stress via the response regulators SSK1 and SHO1. PLoS ONE 11:e0149153.   DOI
39 Vicedo, B., Flors, V., de la O Leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., Garcia-Agustin, P. and Gonzalez-Bosch, C. 2009. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Mol. Plant-Microbe Interact. 22:1455-1465.   DOI
40 Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561-580.   DOI
41 Blume, B. and Grierson, D. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J. 12:731-746.   DOI
42 Barral, B., Chillet, M., Minier, J., Lechaudel, M. and Schorr-Galindo, S. 2017. Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biol. 121:1045-1053.   DOI
43 Barry, C. S., Blume, B., Bouzayen, M., Copper, W., Hamilton, A. J. and Grierson, D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9:525-535.   DOI
44 Ben-Jabeur, M., Ghabri, E., Myriam, M. and Hamada, W. 2015. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiol. Biochem. 94:35-40.   DOI
45 Borges, A, V., Saraiva, R. M. and Maffia, L. A. 2014b. Key factors to inoculate Botrytis cinerea in tomato plants. Summa Phytopathol. 40:221-225.   DOI
46 Lee, Y. H., Kim, Y. J., Moon, J. Y., Kim, H. J., Park, J. M., Hwang, I. S. and Hong, J. K. 2019. Response of two Arabidopsis ecotypes Columbia-0 and Dijon-G to necrotrophic and biotrophic pathogens. Biol. Plant. 63:654-661.   DOI
47 Leyva, M. O., Vicedo, B., Finiti, I., Flors, V., Del Amo, G., Real, M. D., Garcia-Agustin, P. and Gonzalez-Bosch, C. 2008. Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathol. 57:1038-1046.   DOI
48 Borges, A. A., Cools, H. J. and Lucas, J. A. 2003. Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol. 52:429-436.   DOI
49 Borges, A. A., Dobon, A., Exposito-Rodriguez, M., Jimenez-Arias, D., Borges-Perez, A., Casanas-Sanchez, V., Perez, J. A., Luis, J. C. and Tornero, P. 2009. Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol. J. 7:744-762.   DOI
50 Borges, A. A., Jimenez-Arias, D., Exposito-Rodriguez, M., Sandalio, L. M. and Perez, J. A. 2014a. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front. Plant Sci. 5:642.
51 Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., Barbacci, A. and Raffaele, S. 2016. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Front. Plant Sci. 7:422.
52 Li, L., Li, C., Lee, G. I. and Howe, G. A. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. U. S. A. 99:6416-6421.   DOI
53 Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14:166.   DOI
54 Luna, E., Beardon, E., Ravnskov, S., Scholes, J. and Ton, J. 2016. Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Dis. 100:704-710.   DOI
55 Meng, L., Hofte, M. and Van Labeke, M.-C. 2019. Leaf age and light quality influence the basal resistance against Botrytis cinerea in strawberry leaves. Environ. Exp. Bot. 157:35-45.   DOI
56 Monaco, C., Dal Bello, G., Rollan, M. C., Ronco, L., Lampugnani, G., Arteta, N., Abramoff, C., Aprea, A., Larran, S. and Stocco, M. 2009. Biological control of Botrytis cinerea on tomato using naturally occurring fungal antagonists. Arch. Phytopathol. Plant Protect. 42:729-737.   DOI
57 Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I. and Brown, A. J. P. 2009. Phylogenetic diversity of stress signalling pathway in fungi. BMC Evol. Biol. 9:44.   DOI
58 Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A. K., Mickelbart, M. V., Ferruzzi, M. G., Mengiste, T. and Handa, A. K. 2012. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol. 158:1034-1045.   DOI