• Title/Summary/Keyword: Genes related growth

Search Result 550, Processing Time 0.022 seconds

The mRNA Expression of Radio-Sensitive Genes Exposed to Various Dosage of Ionizing Radiation in U-937 Cell (U-937 세포에서 이온화 방사선의 조사선량에 따른 감수성 유전자들의 발현 변화)

  • 김종수;임희영;오연경;김인규;강경선;윤병수
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • We used cDNA microarray to assess gene expression profiles in hematopoetic cell line, U-937, exposed to low doses of ionizing irradiation. The 1,000 DNA elements on this array were PCR-amplified cDNAs selected from named human cancer related genes. According to the strength of irradiation, the levels of some gene expression were increased or decreased as dose-dependent manner. The gene expressions of Tubulin alpha, protein kinase, interferon-alpha, -beta, -omega receptor and ras homolog gene family H were significantly increased. Especially, Tubulin gene was shown 2.5 fold up-regulated manner under stress of 500 rad irradiation than 200 rad. On the other hand, fibroblast growth factor 12 and four and a half LIM domains, etc. were significantly down-regu-lated. Also, tumor protein 53(TP53) related genes that p53 inducible protein, tumor protein 53-binding protein looks of little significance as radiation sensitive manner. The radio-sensitivity of tubulin gene etc. that we proposed could be useful to rapid and correct survey for the bio-damage by exposure to low dose irradiation.

Biological function of nonxpressor of pathogenesis-related genes 1 (NPR1) in response to biotic and abiotic stresses (생물학 및 비생물학적 스트레스 반응에서의 NPR1 기능 고찰)

  • Cheong, Mi Sun;Kim, Sewon;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.281-292
    • /
    • 2016
  • Plants can recognize and respond in various ways to diverse environmental stresses, including pathogenic microorganisms, salt, drought, and low temperature. Salicylic acid (SA) is one phytohormone that plays important roles in the regulation of plant growth and development. Nonexpressor of pathogenesis-related genes 1 (NPR1) was originally identified as a core protein that could function as a transcriptional co-regulator and SA receptor during systemic acquired resistance (SAR), a plant immune response that could activate PR genes after pre-exposure of a pathogen. Although the function of NPR1 in plant defense response and the role of SA hormone in the regulation of plant physiological processes have been well characterized, the biological role of NPR1 in plant abiotic stress responses is largely unknown. In this review, we will summarize and discuss the current understanding of NPR1 function in response to plant environmental stresses.

Static tensional forces increase osteogenic gene expression in three-dimensional periodontal ligament cell culture

  • Ku, Seung-Jun;Chang, Young-Il;Chae, Chang-Hoon;Kim, Seong-Gon;Park, Young-Wook;Jung, Youn-Kwan;Choi, Je-Yong
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.427-432
    • /
    • 2009
  • Orthodontic tooth movement results from the combinational process of both bone resorption and formation in the compressive and tension sides, respectively. However, the genes responsible for new bone formation in tension sides have not been determined. In this study, we used DNA microarray and real-time RT-PCR to identify genes in human periodontal ligament (PDL) cells that undergo significant changes in expression in response to static tensional forces (2 or 12 hours). The genes found were alkaline phospatase (ALP), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and several collagen genes. Furthermore, an ELISA evaluating the expression of VEGF, type IV collagen and MMP-2 found levels significantly increased after 24 and 72 hours (P < 0.05). ALP activity was also increased after 24 hours (P < 0.05). Collectively, we found the genes up-regulated in our study by the static tensional force are related to osteogenic processes such as matrix synthesis and angiogenesis.

Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes (장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴)

  • Bae, Yun-Ui;Moon, Ik-Jae;Seu, Young-Bae;Doh, Kyung-Oh
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.

Auxin-responsive SMALL AUXIN UP RNA genes : recent research progress and its application for crop improvement (옥신 반응 SMALL AUXIN UP RNA 유전자의 최근 연구 동향 및 작물 개량을 위한 적용)

  • Lee, Sang Ho
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Auxin is a key plant hormone which regulates overall plant growth development. A number of researches to investigate auxin signaling identified three major classes of early auxin response genes: AUX/IAA, GH3 and SMALL AUXIN UP RNA (SAUR). Among these genes, in planta functions of SAUR gene family are largely ambiguous, while both AUX/IAA and GH3 genes are analyzed to mediate negative feedback on auxin response. SAUR genes encode small plant-specific proteins. SAUR gene products are highly unstable and transiently expressed in the tissue- and developmental-specific manners in response to auxin and various environmental stimuli. In the decades, molecular and genetic approaches to elucidate in planta functions of SAURs have been hampered by several factors such as the unstable molecular features and functional redundancy among them. However, a series of recent studies focusing on several subgroups of SAUR gene family made significant progress in our understanding of its biochemical and physiological functions. These works suggest that many SAUR proteins mainly regulate auxin-related cell expansion and auxin transport. In this review, the recent progress in SAUR research and prospects for crop improvement through its genetic manipulation are discussed.

Characterization of transcription factor genes related to cold tolerance in Brassica napus

  • Sharma, Mayur Mukut Murlidhar;Ramekar, Rahul Vasudeo;Park, Nam-Il;Choi, Ik-Young;Choi, Seon-Kang;Park, Kyong-Cheul
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2021
  • Brassica napus is the third most important oilseed crop in the world; however, in Korea, it is greatly affected by cold stress, limiting seed growth and production. Plants have developed specific stress responses that are generally divided into three categories: cold-stress signaling, transcriptional/post-transcriptional regulation, and stress-response mechanisms. Large numbers of functional and regulatory proteins are involved in these processes when triggered by cold stress. Here, our objective was to investigate the different genetic factors involved in the cold-stress responses of B. napus. Consequently, we treated the Korean B. napus cultivar Naehan at the 4-week stage in cold chambers under different conditions, and RNA and cDNA were obtained. An in silico analysis included 80 cold-responsive genes downloaded from the National Center for Biotechnology Information (NCBI) database. Expression levels were assessed by reverse transcription polymerase chain reaction, and 14 cold-triggered genes were identified under cold-stress conditions. The most significant genes encoded zinc-finger proteins (33.7%), followed by MYB transcription factors (7.5%). In the future, we will select genes appropriate for improving the cold tolerance of B. napus.

Effects of Overexpression of Brassica rapa GROWTH-REGULATING FACTOR Genes on B. napus Organ Size (배추 GROWTH-REGULATING FACTOR 유전자 발현이 유채 기관크기에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Seung-Bum;Yoon, Hye-Jin;Lee, Yeon-Hee
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.378-386
    • /
    • 2018
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors and play critical roles in regulating the growth and development of lateral organs. In order to explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), we constructed two BrGRF-overexpressing B. napus plants (BrGRF3-1OX and -9OX). BrGRF3-1OX and -9OX developed larger cotyledons, leaves, and seeds than the wild type. The increased organs' sizes were due to increases in cell number, but not due to cell size alterations. RT-PCR analysis revealed that BrGRFs regulated the expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, our data indicate that BrGRFs act as positive regulators of B. napus growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed production.

Longevity Genes: Insights from Calorie Restriction and Genetic Longevity Models

  • Shimokawa, Isao;Chiba, Takuya;Yamaza, Haruyoshi;Komatsu, Toshimitsu
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.427-435
    • /
    • 2008
  • In this review, we discuss the genes and the related signal pathways that regulate aging and longevity by reviewing recent findings of genetic longevity models in rodents in reference to findings with lower organisms. We also paid special attention to the genes and signals mediating the effects of calorie restriction (CR), a powerful intervention that slows the aging process and extends the lifespan in a range of organisms. An evolutionary view emphasizes the roles of nutrient-sensing and neuroendocrine adaptation to food shortage as the mechanisms underlying the effects of CR. Genetic and non-genetic interventions without CR suggest a role for single or combined hormonal signals that partly mediate the effect of CR. Longevity genes fall into two categories, genes relevant to nutrient-sensing systems and those associated with mitochondrial function or redox regulation. In mammals, disrupted or reduced growth hormone (GH)-insulin-like growth factor (IGF)-1 signaling robustly favors longevity. CR also suppresses the GH-IGF-1 axis, indicating the importance of this signal pathway. Surprisingly, there are very few longevity models to evaluate the enhanced anti-oxidative mechanism, while there is substantial evidence supporting the oxidative stress and damage theory of aging. Either increased or reduced mitochondrial function may extend the lifespan. The role of redox regulation and mitochondrial function in CR remains to be elucidated.

Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells

  • Lee, Hyunkyung;Lee, Seungyeon;Jeong, Dawoon;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.455-462
    • /
    • 2018
  • Background: Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods: The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results: LINE1 showed induction of hypomethylation at specific CpGs by 1.6-9.1% (p < 0.05). Genome-wide methylation analysis identified the "cell-mediated immune response"-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion: The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.