Browse > Article

Longevity Genes: Insights from Calorie Restriction and Genetic Longevity Models  

Shimokawa, Isao (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University)
Chiba, Takuya (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University)
Yamaza, Haruyoshi (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University)
Komatsu, Toshimitsu (Department of Investigative Pathology, Unit of Basic Medical Science, Graduate School of Biomedical Sciences, Nagasaki University)
Abstract
In this review, we discuss the genes and the related signal pathways that regulate aging and longevity by reviewing recent findings of genetic longevity models in rodents in reference to findings with lower organisms. We also paid special attention to the genes and signals mediating the effects of calorie restriction (CR), a powerful intervention that slows the aging process and extends the lifespan in a range of organisms. An evolutionary view emphasizes the roles of nutrient-sensing and neuroendocrine adaptation to food shortage as the mechanisms underlying the effects of CR. Genetic and non-genetic interventions without CR suggest a role for single or combined hormonal signals that partly mediate the effect of CR. Longevity genes fall into two categories, genes relevant to nutrient-sensing systems and those associated with mitochondrial function or redox regulation. In mammals, disrupted or reduced growth hormone (GH)-insulin-like growth factor (IGF)-1 signaling robustly favors longevity. CR also suppresses the GH-IGF-1 axis, indicating the importance of this signal pathway. Surprisingly, there are very few longevity models to evaluate the enhanced anti-oxidative mechanism, while there is substantial evidence supporting the oxidative stress and damage theory of aging. Either increased or reduced mitochondrial function may extend the lifespan. The role of redox regulation and mitochondrial function in CR remains to be elucidated.
Keywords
calorie restriction; longevity gene; mitochondria; neuroendocrine; nutrients;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 15  (Related Records In Web of Science)
연도 인용수 순위
1 Bluher, M., Kahn, B.B., and Kahn, C.R. (2003). Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572-574   DOI   ScienceOn
2 Bluher, M., Patti, M.E., Gesta, S., Kahn, B.B., and Kahn, C.R. (2004). Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression. J. Biol. Chem. 279, 31891-31901   DOI   ScienceOn
3 Brown-Borg, H.M., Borg, K.E., Meliska, C.J., and Bartke, A. (1996). Dwarf mice and the ageing process. Nature 384, 33
4 Holliday, R. (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays 10, 125-127   DOI
5 Kaeberlein, M., and Powers, R.W., 3rd. (2007). Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 6, 128-140   DOI   ScienceOn
6 Kaestner, K.H. (2000). The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol. Metab. 11, 281-285   DOI   ScienceOn
7 Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., Mochida, K., Hata, T., Matsuda, J., Aburatani, H., et al. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279, 41114-41123   DOI   ScienceOn
8 Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348   DOI   ScienceOn
9 Liu, X., Jiang, N., Hughes, B., Bigras, E., Shoubridge, E., and Hekimi, S. (2005). Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424-2434   DOI   ScienceOn
10 Michalkiewicz, M., Knestaut, K.M., Bytchkova, E.Y., and Michalkiewicz, T. (2003). Hypotension and reduced catecholamines in neuropeptide Y transgenic rats. Hypertension 41, 1056-1062   DOI   ScienceOn
11 Migliaccio, E., Mele, S., Salcini, A.E., Pelicci, G., Lai, K.M., Superti-Furga, G., Pawson, T., Di Fiore, P.P., Lanfrancone, L., and Pelicci, P.G. (1997). Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J. 16, 706-716   DOI   ScienceOn
12 Miskin, R., Tirosh, O., Pardo, M., Zusman, I., Schwartz, B., Yahav, S.,Dubnov, G., and Kohen, R. (2005). AlphaMUPA mice: a transgenic model for longevity induced by caloric restriction. Mech. Ageing Dev. 126, 255-261   DOI   ScienceOn
13 Nakae, J., Oki, M., and Cao, Y. (2008). The FoxO transcription factors and metabolic regulation. FEBS Lett. 582, 54-67   DOI   ScienceOn
14 Neugebauer, R.C., Sippl, W., and Jung, M. (2008). Inhibitors of NAD+ dependent histone deacetylases (sirtuins). Curr. Pharm. Des. 14, 562-573   DOI   ScienceOn
15 Ooka, H., and Shinkai, T. (1986). Effects of chronic hyperthyroidism on the lifespan of the rat. Mech. Ageing Dev. 33, 275-282   DOI   ScienceOn
16 Ran, Q., Liang, H., Ikeno, Y., Qi, W., Prolla, T.A., Roberts, L.J., 2nd, Wolf, N., VanRemmen, H., and Richardson, A. (2007). Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. A Biol. Sci. Med. Sci. 62, 932-942   DOI   ScienceOn
17 Shaw, R.J., and Cantley, L.C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430   DOI   ScienceOn
18 Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4, e13   DOI   ScienceOn
19 Yamamoto, M., Clark, J.D., Pastor, J.V., Gurnani, P., Nandi, A., Kurosu, H., Miyoshi, M., Ogawa, Y., Castrillon, D.H., Rosenblatt, K.P., et al. (2005). Regulation of oxidative stress by the anti-aging hormone klotho. J. Biol. Chem. 280, 38029-38034   DOI   ScienceOn
20 Yamaza, H., Komatsu, T., Chiba, T., Toyama, H., To, K., Higami, Y., and Shimokawa, I. (2004). A transgenic dwarf rat model as a tool for the study of calorie restriction and aging. Exp. Gerontol. 39, 269-272   DOI   ScienceOn
21 Bluher, M., Michael, M.D., Peroni, O.D., Ueki, K., Carter, N., Kahn, B.B., and Kahn, C.R. (2002). Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3, 25-38   DOI   ScienceOn
22 Sabatino, F., Masoro, E.J., McMahan, C.A., and Kuhn, R.W. (1991). Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J. Gerontol. 46, B171-179   DOI
23 Bartke, A., Wright, J.C., Mattison, J.A., Ingram, D.K., Miller, R.A., and Roth, G.S. (2001). Extending the lifespan of long-lived mice. Nature 414, 412   DOI
24 Longo, V.D., and Finch, C.E. (2003). Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342-1346   DOI   ScienceOn
25 Carvajal, C.C., Vercauteren, F., Dumont, Y., Michalkiewicz, M., and Quirion, R. (2004). Aged neuropeptide Y transgenic rats are resistant to acute stress but maintain spatial and non-spatial learning. Behav. Brain Res. 153, 471-480   DOI   ScienceOn
26 Nelson, J.F. (1994). Neuroendocrine involvement in the retardation of aging by dietary restriction. In Modulation of Aging Processes by Dietary Restriction, B.P. Yu, ed. (Boca Raton, FL, USA: CRC Press, Inc.), pp. 37-55
27 Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S.J., and Kenyon, C. (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95-110   DOI   ScienceOn
28 Shimokawa, I., and Higami, Y. (2001a). Leptin and anti-aging action of caloric restriction. J. Nutr. Health Aging 5, 43-48
29 Tokunaga, C., Yoshino, K., and Yonezawa, K. (2004). mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 313, 443-446   DOI   ScienceOn
30 Dell'agnello, C., Leo, S., Agostino, A., Szabadkai, G., Tiveron, C., Zulian, A., Prelle, A., Roubertoux, P., Rizzuto, R., and Zeviani, M. (2007). Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 16, 431-444   DOI
31 Kurosu, H., Yamamoto, M., Clark, J.D., Pastor, J.V., Nandi, A., Gurnani, P., McGuinness, O.P., Chikuda, H., Yamaguchi, M., Kawaguchi, H., et al. (2005). Suppression of aging in mice by the hormone Klotho. Science 309, 1829-1833   DOI   ScienceOn
32 Masoro, E.J. (2003). Subfield history: caloric restriction, slowing aging, and extending life. Sci. Aging Knowledge Environ. 2003, RE2
33 Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., Ladiges, W., Wolf, N., Van Remmen, H., et al. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909-1911   DOI   ScienceOn
34 Stenmark, P., Grunler, J., Mattsson, J., Sindelar, P.J., Nordlund, P., and Berthold, D.A. (2001). A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J. Biol. Chem. 276, 33297-33300   DOI   ScienceOn
35 Taguchi, A., and White, M.F. (2008). Insulin-like signaling, nutrient homeostasis, and life span. Annu. Rev. Physiol. 70, 191-212   DOI   ScienceOn
36 Jorgensen, P., Rupes, I., Sharom, J.R., Schneper, L., Broach, J.R., and Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 18, 2491-2505   DOI   ScienceOn
37 Salmon, A.B., Murakami, S., Bartke, A., Kopchick, J., Yasumura, K., and Miller, R.A. (2005). Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am. J. Physiol. Endocrinol. Metab. 289, E23-29   DOI   ScienceOn
38 Chiu, C.H., Lin, W.D., Huang, S.Y., and Lee, Y.H. (2004). Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells. Genes Dev. 18, 1970-1975   DOI   ScienceOn
39 Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., and Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106   DOI   ScienceOn
40 Lapointe, J., and Hekimi, S. (2008). Early mitochondrial dysfunction in long-lived Mclk1 +/- mice. J. Biol. Chem. 283, 26217-26227   DOI   ScienceOn
41 Shimokawa, I. (2006). A transgenic rat mini rat strain as a tool for studying aging and calorie restriction. In Handbook of Models for Human Aging, P.M. Conn, ed. (Burlington, Canada: Elsevier Inc.), pp. 367-378
42 Shimokawa, I., and Higami, Y. (2001b). Leptin signaling and aging: insight from caloric restriction. Mech. Ageing Dev. 122, 1511-1519   DOI   ScienceOn
43 Stewart, J.W., Koehler, K., Jackson, W., Hawley, J., Wang, W., Au, A., Myers, R., and Birt, D.F. (2005). Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 26, 1077-1084   DOI   ScienceOn
44 Hardie, D.G. (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144, 5179-5183   DOI   ScienceOn
45 Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans. mutant that lives twice as long as wild type. Nature 366, 461-464   DOI   ScienceOn
46 Lopez-Lluch, G., Irusta, P.M., Navas, P., and de Cabo, R. (2008). Mitochondrial biogenesis and healthy aging. Exp. Gerontol. 43, 813-819   DOI   ScienceOn
47 Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P.P., Lanfrancone, L., and Pelicci, P.G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313   DOI   ScienceOn
48 Mitsui, A., Hamuro, J., Nakamura, H., Kondo, N., Hirabayashi, Y., Ishizaki-Koizumi, S., Hirakawa, T., Inoue, T., and Yodoi, J. (2002). Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal. 4, 693-696   DOI   ScienceOn
49 Otabe, S., Yuan, X., Fukutani, T., Wada, N., Hashinaga, T., Nakayama, H., Hirota, N., Kojima, M., and Yamada, K. (2007). Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet. Am. J. Physiol. Endocrinol. Metab. 293, E210-218   DOI   ScienceOn
50 Yan, L., Vatner, D.E., O'Connor, J.P., Ivessa, A., Ge, H., Chen, W., Hirotani, S., Ishikawa, Y., Sadoshima, J., and Vatner, S.F. (2007). Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130, 247-258   DOI   ScienceOn
51 Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 13091-13096
52 Miskin, R., and Masos, T. (1997). Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size, and increased longevity. J. Gerontol. A Biol. Sci. Med. Sci. 52, B118-124
53 Quick, K.L., Ali, S.S., Arch, R., Xiong, C., Wozniak, D., and Dugan, L.L. (2008). A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol. Aging 29, 117-128   DOI   ScienceOn
54 To, K., Yamaza, H., Komatsu, T., Hayashida, T., Hayashi, H., Toyama, H., Chiba, T., Higami, Y., and Shimokawa, I. (2007). Downregulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp. Gerontol. 42, 1063-1071   DOI   ScienceOn
55 Flurkey, K., Papaconstantinou, J., Miller, R.A., and Harrison, D.E. (2001). Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. USA 98, 6736-6741
56 McCarter, R.J., and Palmer, J. (1992). Energy metabolism and aging: a lifelong study of Fischer 344 rats. Am. J. Physiol. 263, E448-452
57 Panowski, S.H., Wolff, S., Aguilaniu, H., Durieux, J., and Dillin, A. (2007). PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans.. Nature 447, 550-555   DOI   ScienceOn
58 Park, S.J., Hahc Komatsu, T., Hayashi, H., Yamaza, H., Chiba, T., Higami, Y., Kuramoto, K., and Shimokawa, I. (2008). Calorie restriction initiated at a young age activates the Akt/PKCz/l-Glut4 pathway in rat white adipose tissue in an insulin-independent manner. AGE
59 Friedman, D.B., and Johnson, T.E. (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75-86
60 Hulbert, A.J., Clancy, D.J., Mair, W., Braeckman, B.P., Gems, D., and Partridge, L. (2004). Metabolic rate is not reduced by dietaryrestriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster. Exp. Gerontol. 39, 1137-1143   DOI   ScienceOn
61 Lakowski, B., and Hekimi, S. (1996). Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272, 1010-1013   DOI   ScienceOn
62 Paik, J.H., Kollipara, R., Chu, G., Ji, H., Xiao, Y., Ding, Z., Miao, L., Tothova, Z., Horner, J.W., Carrasco, D. R., et al. (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309-323   DOI   ScienceOn
63 Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., and Baskin, D.G. (2000). Central nervous system control of food intake. Nature 404, 661-671   DOI
64 Dorman, J.B., Albinder, B., Shroyer, T., and Kenyon, C. (1995). The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399-1406
65 Mair, W., and Dillin, A. (2008). Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727-754   DOI   ScienceOn
66 Pfluger, P.T., Herranz, D., Velasco-Miguel, S., Serrano, M., and Tschop, M.H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. USA 105, 9793-9798
67 Chen, D., Steele, A.D., Lindquist, S., and Guarente, L. (2005). Increase in activity during calorie restriction requires Sirt1. Science 310, 1641   DOI
68 Faulks, S.C., Turner, N., Else, P.L., and Hulbert, A.J. (2006). Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J. Gerontol. A Biol. Sci. Med. Sci. 61, 781-794   DOI   ScienceOn
69 Murakami, S., Salmon, A., and Miller, R.A. (2003). Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 17, 1565-1566   DOI
70 Shimokawa, I., Higami, Y., Utsuyama, M., Tuchiya, T., Komatsu, T., Chiba, T., and Yamaza, H. (2002). Life span extension by reduction in growth hormone-insulin-like growth factor-1 axis in a transgenic rat model. Am. J. Pathol. 160, 2259-2265   DOI   ScienceOn
71 Taguchi, A., Wartschow, L.M., and White, M.F. (2007). Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369-372   DOI   ScienceOn
72 Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193-1196   DOI   ScienceOn
73 Katic, M., Kennedy, A.R., Leykin, I., Norris, A., McGettrick, A., Gesta, S., Russell, S. J., Bluher, M., Maratos-Flier, E., and Kahn, C.R. (2007). Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 6, 827-839   DOI   ScienceOn
74 Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295   DOI   ScienceOn
75 Conti, B., Sanchez-Alavez, M., Winsky-Sommerer, R., Morale, M.C., Lucero, J., Brownell, S., Fabre, V., Huitron-Resendiz, S., Henriksen, S., Zorrilla, E.P., et al. (2006). Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825-828   DOI   ScienceOn
76 Gong, X., Shang, F., Obin, M., Palmer, H., Scrofano, M.M., Jahngen-Hodge, J., Smith, D.E., and Taylor, A. (1997). Antioxidant enzyme activities in lens, liver and kidney of calorie restricted Emory mice. Mech. Ageing Dev. 99, 181-192   DOI   ScienceOn
77 Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., and Brunet, A. (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646-1656   DOI   ScienceOn
78 Honda, Y., Tanaka, M., and Honda, S. (2008). Modulation of longevity and diapause by redox regulation mechanisms under the insulinlike signaling control in Caenorhabditis elegans. Exp. Gerontol. 43, 520-529   DOI   ScienceOn
79 McCay, C.M., Crowell, M.F., and Maynard, L.A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155-171; discussion 172
80 Van Remmen, H., Ikeno, Y., Hamilton, M., Pahlavani, M., Wolf, N., Thorpe, S.R., Alderson, N.L., Baynes, J.W., Epstein, C.J., Huang, T.T., et al. (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29-37   DOI   ScienceOn
81 Ahima, R.S., and Lazar, M.A. (2008). Adipokines and the peripheral and neural control of energy balance. Mol. Endocrinol. 22, 1023-1031   DOI   ScienceOn
82 Bonkowski, M.S., Rocha, J.S., Masternak, M.M., Al Regaiey, K.A., and Bartke, A. (2006). Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl. Acad. Sci. USA 103, 7901-7905
83 Hayashi, H., Yamaza, H., Komatsu, T., Park, S., Chiba, T., Higami, Y., Nagayasu, T., and Shimokawa, I. (2008). Calorie restriction minimizes activation of insulin signaling in response to glucose: Potential involvement of the growth hormone-insulin-like growth factor 1 axis. Exp. Gerontol.43, 827-832   DOI   ScienceOn
84 Gonzalez, A.A., Kumar, R., Mulligan, J.D., Davis, A.J., Weindruch, R., and Saupe, K.W. (2004). Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity. Am. J. Physiol. Endocrinol. Metab.287, E1032-1037   DOI   ScienceOn
85 Selman, C., Lingard, S., Choudhury, A.I., Batterham, R.L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., et al. (2008). Evidence for lifespan extension and delayed agerelated biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807-818   DOI
86 Yamaza, H., Komatsu, T., To, K., Toyama, H., Chiba, T., Higami, Y., and Shimokawa, I. (2007). Involvement of insulin-like growth factor-1 in the effect of caloric restriction: regulation of plasma adiponectin and leptin. J. Gerontol. A Biol. Sci. Med. Sci. 62, 27-33   DOI   ScienceOn
87 Caldeira da Silva, C.C., Cerqueira, F.M., Barbosa, L.F., Medeiros, M.H., and Kowaltowski, A.J. (2008). Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7, 552-560   DOI   ScienceOn
88 Cho, C.G., Kim, H.J., Chung, S.W., Jung, K.J., Shim, K.H., Yu, B.P., Yodoi, J., and Chung, H.Y. (2003). Modulation of glutathione and thioredoxin systems by calorie restriction during the aging process. Exp. Gerontol. 38, 539-548   DOI   ScienceOn
89 Conover, C.A., and Bale, L.K. (2007). Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6, 727-729   DOI   ScienceOn
90 Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P.C., Cervera, P., and Le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187   DOI   ScienceOn
91 apahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885-890   DOI   ScienceOn
92 Nandi, A., Kitamura, Y., Kahn, C.R., and Accili, D. (2004). Mouse models of insulin resistance. Physiol. Rev. 84, 623-647   DOI   ScienceOn
93 Coschigano, K.T., Clemmons, D., Bellush, L.L., and Kopchick, J.J. (2000). Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608-2613   DOI   ScienceOn
94 Hu, D., Cao, P., Thiels, E., Chu, C.T., Wu, G.Y., Oury, T.D., and Klann, E. (2007). Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol. Learn Mem. 87, 372-384   DOI   ScienceOn
95 Zhu, M., Lee, G.D., Ding, L., Hu, J., Qiu, G., de Cabo, R., Bernier, M., Ingram, D.K., and Zou, S. (2007). Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp. Gerontol. 42, 733-744   DOI   ScienceOn
96 Camina, J.P., Carreira, M.C., Micic, D., Pombo, M., Kelestimur, F., Dieguez, C., and Casanueva, F.F. (2003). Regulation of ghrelin secretion and action. Endocrine 22, 5-12   DOI   ScienceOn
97 Martin, D.E., Soulard, A., and Hall, M.N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969-979   DOI   ScienceOn
98 Pashko, L.L., and Schwartz, A.G. (1992). Reversal of food restrictioninduced inhibition of mouse skin tumor promotion by adrenalectomy. Carcinogenesis 13, 1925-1928   DOI   ScienceOn
99 Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans.. Nature 426, 620