• Title/Summary/Keyword: Genes

Search Result 11,919, Processing Time 0.037 seconds

Studies on Cellular Factors Responsible for 2,3,7,8-TCDD Resistency and Cellular Transformation (2,3,7,8-TCDD의 세포형질전환 및 내성획득에 관여하는 세포내 인자에 관한 연구)

  • Ryeom Tai-Kyung;Choi Young-Sill;Kim Ok-Hee;Kang Ho-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • To enhance our understanding of toxicity mediated through the pathway by which TCDD stimulates gene expression, we have investigated genes whose expressions are changed after treatment with TCDD and/or MNNG in human Chang liver cell. First, we treated with MNNG and TCDD for two weeks to transform human Chang liver cell. We obtained cell looks like to be transformed and compared the differential gene expression by using cDNA chip (Macrogen) which carrys genes related with signal transduction pathways, oncogenes and tumor suppressor genes, etc. We found that TCDD up- or down-regulated 203 and 111 genes including oncogenes and tumor suppressor genes in human Chang liver cell two fold or more, respectively. Second, we compared the differential gene expression after treatment with TCDD only by using cDNA chip (Superarray) which carrys genes related with cell cycle regulations, and found that TCDD up regulated genes related with cell proliferation as well as cell growth inhibition in human Chang liver cell two fold or more, respectively. These results suggest that toxicity induced by TCDD may reflect sustained alterations in the expression of many genes and that the changes reflect both direct and indirect effects of TCDD.

  • PDF

Identification of Marker Genes Related to Cardiovascular Toxicity of Doxorubicin and Daunorubicin in Human Umbilical Vein Endothelial Cells (HUVECs)

  • Kim, Youn-Jung;Lee, Ha-Eun;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.246-253
    • /
    • 2007
  • Doxorubicin and daunorubicin are excellent chemotherapeutic agents utilized for several types of cancer but the irreversible cardiac damage is the major limitation for its use. The biochemical mechanisms of doxorubicin- and daunorubicin- induced cardiotoxicity remain unclear. There are many reports on toxicity of doxorubicin and doxorubicin in cardiomyocytes, but effects in cardiovascular system by these drugs are almost not reported. In this study, we investigated gene expression profiles in human umbilical vein endothelial cells (HUVECs) to better understand the causes of doxorubicin and doxorubicininduced cardiovascular toxicity and to identify differentially expressed genes (DEGs). Through the clustering analysis of gene expression profiles, we identified 124 up-regulated common genes and 298 down-regulated common genes changed by more than 1.5-fold by all two cardiac toxicants. HUVECs responded to doxorubicin and doxorubicin damage by increasing levels of apoptosis, oxidative stress, EGF and lipid metabolism related genes. By clustering analysis, we identified some genes as potential markers on apoptosis effects of doxorubicin and doxorubicin. Six genes of these, BBC3, APLP1, FAS, TP53INP, BIRC5 and DAPK were the most significantly affected by doxorubicin and doxorubicin. Thus, this study suggests that these differentially expressed genes may play an important role in the cardiovascular toxic effects and have significant potential as novel biomarkers to doxorubicin and doxorubicin exposure.

Possibility of the Use of Public Microarray Database for Identifying Significant Genes Associated with Oral Squamous Cell Carcinoma

  • Kim, Ki-Yeol;Cha, In-Ho
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • There are lots of studies attempting to identify the expression changes in oral squamous cell carcinoma. Most studies include insufficient samples to apply statistical methods for detecting significant gene sets. This study combined two small microarray datasets from a public database and identified significant genes associated with the progress of oral squamous cell carcinoma. There were different expression scales between the two datasets, even though these datasets were generated under the same platforms - Affymetrix U133A gene chips. We discretized gene expressions of the two datasets by adjusting the differences between the datasets for detecting the more reliable information. From the combination of the two datasets, we detected 51 significant genes that were upregulated in oral squamous cell carcinoma. Most of them were published in previous studies as cancer-related genes. From these selected genes, significant genetic pathways associated with expression changes were identified. By combining several datasets from the public database, sufficient samples can be obtained for detecting reliable information. Most of the selected genes were known as cancer-related genes, including oral squamous cell carcinoma. Several unknown genes can be biologically evaluated in further studies.

Finding associations between genes by time-series microarray sequential patterns analysis

  • Nam, Ho-Jung;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.161-164
    • /
    • 2005
  • Data mining techniques can be applied to identify patterns of interest in the gene expression data. One goal in mining gene expression data is to determine how the expression of any particular gene might affect the expression of other genes. To find relationships between different genes, association rules have been applied to gene expression data set [1]. A notable limitation of association rule mining method is that only the association in a single profile experiment can be detected. It cannot be used to find rules across different condition profiles or different time point profile experiments. However, with the appearance of time-series microarray data, it became possible to analyze the temporal relationship between genes. In this paper, we analyze the time-series microarray gene expression data to extract the sequential patterns which are similar to the association rules between genes among different time points in the yeast cell cycle. The sequential patterns found in our work can catch the associations between different genes which express or repress at diverse time points. We have applied sequential pattern mining method to time-series microarray gene expression data and discovered a number of sequential patterns from two groups of genes (test, control) and more sequential patterns have been discovered from test group (same CO term group) than from the control group (different GO term group). This result can be a support for the potential of sequential patterns which is capable of catching the biologically meaningful association between genes.

  • PDF

Computational Identification and Comparative Genomic Analysis of Soybean Oxidative Stress-Related Genes

  • Arti, Sharma;Mun, Bong-Gyu;Yun, Byung-Wook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • Reactive oxygen and nitrogen species (ROS and RNS, respectively) are messengers that carry signals to alter the redox state in order to activate plant responses and other physiological processes, such as differentiation, aging, senescence, and pathogen defense. Quite a large number of genes are involved in this signaling and lead to oxidative stress in plants. Although the role of ROS/RNS during stress conditions is well documented, a comprehensive list of genes and comparative study of these genes has not yet been completed. Accordingly, the in silico identification of oxidative stress-related genes was performed for soybeans and Arabidopsis. These genes were also studied in relation to multiple domain prediction. The presence of domains like dehydogenase and ATPase suggests that these genes are involved in various metabolic processes, as well as the transportation of ions under optimal environmental conditions. In addition to a sequence analysis, a phylogenetic analysis was also performed to identify orthologous pairs among the soybean and Arabidopsis oxidative stress-related genes based on neighbor joining. This study was also conducted with the objective of further understanding the complex molecular signaling mechanism in plants under various stress conditions.

Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis

  • Bae, Young-An
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.175-183
    • /
    • 2017
  • Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between $GC_{12}$ and $GC_3$ was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., $GC_3$ vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

Riboprint and Virulence Gene Patterns for Bacillus cereus and Related Species

  • Kim, Young-Rok;Batt, Carl A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1146-1155
    • /
    • 2008
  • A total of 72 Bacillus cereus strains and 5 Bacillus thuringiensis strains were analyzed for their EcoRI ribogroup by ribotyping and for the presence or absence of seven virulence-associated genes. From these 77 strains, 42 distinctive ribogroup were identified using EcoRI, but the two species could not be discriminated by their EcoRI ribogroup. The 77 strains were also examined by PCR for the presence of seven virulence-associated genes, cerAB, pi-plc, entFM, bceT, hblA, hblC, and hblD. All five Bacillus thuringiensis strains were positive for these genes. Although differences in the patterns of virulence genes were observed among the different B. cereus strains, within any given ribogroup the patterns of the seven virulence genes was the same. Pulsed-field gel electrophoresis (PFGE) analysis in combination with available chromosomal maps for a selected group of B. cereus strains revealed significant differences in their chromosome size and the placement of virulence genes. Evidence for significant rearrangements within the B. cereus chromosome suggests the mechanism through which the pattern of virulence-associated genes varies. The results suggest linkage between ribogroups and virulence gene patterns as well as no apparent containment of the latter within any particular species boundary.

Identification of Stage-specific Genes Related to Porcine Folliculogenesis

  • Lee, Jae Hee;Lee, Seung Tae;Kim, Heebal;Lim, Jeong Mook
    • Reproductive and Developmental Biology
    • /
    • v.37 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • Although assisted reproductive technology is very useful to develop novel and therapeutic biomaterials for reproduction, research on molecular mechanism of folliculogenesis in pig is not clear. Therefore, the alteration of gene expression during follicular development in pigs was examined in this study. The expression of folliculogenesis-related genes was quantified in preantral ($250{\sim}300{\mu}m$) and antral (> $300{\mu}m$ in diameter) follicles, and overall gene expression was evaluated by a genome-wide microarray. The microarray results showed that 219 genes were differentially expressed, and of those, 10 and 22 known genes showed higher and less expression at the preantral stage than at antral stages, respectively. Among them, the expression of NR0B1, PPARG, GATA4, and ANXA2 genes related to folliculogenesis was validated by quantitative real-time PCR analysis. The expression of PPARG and GATA4 genes were increased at antral stages, but a significantly stage-specific increase (p<0.05) was only detected in annexin A2 (ANXA2) in antral-stage follicles. The expression of NR0B1 genes was increased at preantral stage and these patterns of gene expression were comparable to the results obtained by microarray analysis. We propose that the systematical regulation of genes supporting specific follicle stage should be employed for improved in-vitro folliculognesis.

Homology Analysis Among the Biphenyl and 4-Chlorobiphenyl Degrading Genes by Southern Hybridization (Southern Hybridization에 의한 Biphenyl 및 4-Chlorobiphenyl 분해유전자들의 상동성 분석)

  • 남정현;김치경;이재구;이길재
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1994
  • The homology among the genes coding for degradation of bipheny(BP) and 4-chlorobiphenyl(4CB) was comparatively analyzed by Southern hybridization in several BP/4CB degrading bacterial strains. As the hybridization results of their genomic DNAs with pcbABCD as the DNA probe, the group of Pseudomonas sp. DJ-12. P08 and P27 strain was separated by the group of P20 and P1242 strains. The P. pseudoalcaligenes KF707 showed the hybidization signal which was homologous to the group of DJ-12, but they had different restriction endonuclease sites. The pcbAB genes in pCUl recombinant plasmid from Pseudomonas sp. DJ-12 appeared to be homologous to pchAB genes in pKTF20 cloned from P. pseudoalcaligenes KF707, but the C genes in both strains were not homologous. The bphABC in pKTF20 showed the signals homologous to the cbp ACB in pAW6194 cloned from P. putida OU83, but homologous signal was not found botween the pcbABCD genes in pCUl and the cbpADCB genes in pAW6194 recombbinant plasmid.

  • PDF

Analysis of Gene Expression in Mouse Spinal Cord-derived Neural Precursor Cells During Neuronal Differentiation

  • Ahn, Joon-Ik;Kim, So-Young;Ko, Moon-Jeong;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.85-96
    • /
    • 2009
  • The differentiation of neural precursor cells (NPCs) into neurons and astrocytes is a process that is tightly controlled by complicated and ill-defined gene networks. To extend our knowledge to gene networks, we performed a temporal analysis of gene expression during the differentiation (2, 4, and 8 days) of spinal cord-derived NPCs using oligonucleotide microarray technology. Out of 32,996 genes analyzed, 1878 exhibited significant changes in expression level (fold change>2, p<0.05) at least once throughout the differentiation process. These 1878 genes were classified into 12 groups by k-means clustering, based on their expression patterns. K-means clustering analysis revealed that the genes involved in astrogenesis were categorized into the clusters containing constantly upregulated genes, whereas the genes involved in neurogenesis were grouped to the cluster showing a sudden decrease in gene expression on Day 8. Functional analysis of the differentially expressed genes indicated the enrichment of genes for Pax6- NeuroD signaling.TGFb-SMAD and BMP-SMAD.which suggest the implication of these genes in the differentiation of NPCs and, in particular, key roles for Nova1 and TGFBR1 in the neurogenesis/astrogenesis of mouse spinal cord.