• Title/Summary/Keyword: Genes

Search Result 11,697, Processing Time 0.048 seconds

Inhibitory Effects of Tenebrio molitor Larvae Ethanol Extract on RANKL-Induced Osteoclast Differentiation (갈색거저리 유충 에탄올 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Seo, Minchul;Baek, Minhee;Lee, Hwa Jeong;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.983-989
    • /
    • 2020
  • The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is key to bone health. An imbalance between osteoclasts and osteoblasts leads to various bone-related disorders, such as osteoporosis, osteomalacia, and osteopetrosis. However, the bone-resorption inhibitor drugs that are currently used may cause side effects. Natural substances have recently received much attention as therapeutic drugs for the treatment of bone health. This study was designed to determine the effect of Tenebrio molitor larvae ethanol extract (TME) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. To measure the effect of TME on osteoclast differentiation, RAW264.7 cells were treated with RANKL with or without TME for 5 days. The tartrate-resistant acid phosphatase (TRAP) activity was significantly inhibited by treatment of TME without cytotoxicity up to 2 mg/ml. In addition, TME effectively suppressed expression of osteoclast differentiation-related marker genes and proteins such as TRAP, NFATc1, and c-Src. TME also significantly inhibited the p38 mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and JNK signaling in RANKL-induced RAW264.7 cells. Consequently, we conclude that TME suppresses osteoclast differentiation by inhibiting RANKL-induced osteoclastogenic genes expression through the p38 MAPK signaling pathways. These results suggest that TME and its bioactive components are potential therapeutics for bone-related diseases such as osteoporosis.

Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진)

  • Kim Soo-Youn;Choi Gang Guk;Park Youn Il;Park Young Mok;Yang Young Ki;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.

Generation of a Mammalian Gene Expression Vector Using Bovine Viral Diarrhea Virus (Bovine Vira1 Diarrhea Virus를 이용한 포유동물세포 발현벡터의 개발)

  • 이영민
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.86-95
    • /
    • 2002
  • As a result of genome projects, the research to elucidate the function of a protein of interest has recently been well-recognized. In order to facilitate functional genomics, a useful mammalian gene expression vector is required. Using an infectious CDNA clone of BVDV pNADLclns-, we have developed a mammalian gene expression vector. In this study, a replication-competent full-length infectious CDNA clone containing puremycin acetyltransferase (pac) gene (pNADLclns-/pac) was successfully generated. The viral RNA replication and viral protein NS3 synthesis were examined by detecting metabollically $^{32}P$-labelled genomic viral RNA and immunoblotting with a mouse anti-NS3 antibody. To generate viral replicon as an expression vector, we examine if the viral structural genes (C, E0, El, E2) are required for viral replication by deletion analysis. As a result, all of the structural proteins are dispensable for viral replication per se, but essential for infectious viral particle formation. Based on our deletion analysis, we have generated a replication-competent BVDV viral replicon (pNADLclns-/pac/${\Delta}S$), whose structural genes are all deleted. In addition to NADLclns- /pac/${\Delta}S$, NADLclns-/ luc/${\Delta}S$ viral replicon containing luciferase gene as a reporter was constructed and fecund to be replication-compotent in HeLa and BHK cells as well as MDBK cells. Therefore, BVDV viral replicon developed in our study will be a useful tool to express a protein of interest in various mammalian cells.

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

The expression patterns of RANKL and OPG in murine tooth eruption (치아발육시기에서의 RANKL 및 OPG의 발현 양상)

  • Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.290-303
    • /
    • 2006
  • Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Osteoclast precursors must be recruited into the dental follicle prior to the onset of eruption. This function of dental follicle may be regarded as the ability of bone remodeling characterized by the interaction of osteoclasts and osteoblasts. This is because tooth eruption is a localized event in which many of the genes required for eruption are expressed in the dental follicle. RANKL is a membrane-bound protein that is a member of the TNF ligand family. which is present on bone marrow stromal cells and osteoblasts, and induces osteoclast formation and activation from precursor cell. The biologic effect of RANKL is inhibited by OPG and, in bone, the relative ratio of RANKL and OPG modulates osteoclastogenesis. To evaluate the roles of RANKL and OPG in tooth eruption and the relations with the expression pattern of Runx2, in situ hybridization was performed with mandibles of mice at postnatal stage 1, 3, 5, 7, 9 and 11. mRNA of RANKL, OPG, and Runx2 are expressed in dental follicle and surrounding tissue from P1 to 11. To determine the sites of osteoclastic activity during tooth eruption, mandibles were dissected. Peak osteoclastic activity in alveolar bone along the occlusal and basal regions was observed from P5 to 9, with osteoclasts in these regions being large and strongly TRAP-positive The specific spatio-temporal expression patterns of RANKL, OPG, and Runx2 in our study suggest that tooth eruption could be progressed through the interactions of molecular signaling among dental follicle, dental organ and alveolar bone, furthermore it means that dental follicle is quite important in tooth eruption In addition, it indicates that these genes (RANKL, OPG, and Runx2) play critical roles in tooth eruption.

  • PDF

Blood Pressure in Relation to α-Adducin, Angiotensinogen, ACE Gene Polymorphisms and Sodium Intake in Korean Female Elderly Subjects (한국 여성 노인에서 α -Adducin, Angiotensinogen, ACE 유전자다형성 및 나트륨 섭취수준에 따른 혈압의 비교)

  • Chae, Sun-Ju;Chung, Ja-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1371-1377
    • /
    • 2006
  • Gene polymorphisms that are associated with sodium homeostasis in the body, such as $\alpha-adducin$ (ADDI, Gly460Trp), angiotensinogen (AGT, Met235Thr), and angiotensin converting enzyme (ACE, Ins/Del) may increase the risk for the development of hypertension. The purpose of this study was to elucidate the relationship between the singular and combined effects of ADD1, AGT, ACE genotypes, and blood pressure in elderly population. Moreover, we examined the interaction of sodium intake and polymorphisms of aforementioned genes and their effects on blood pressure. Among one hundred and nine female subjects, aged 60 and over (mean 75.9 yr), the major alleles for ADD1, AGT, and ACE polymorphisms in the studied population were Gly (66.1%), Thr (64.2%), Ins (83.5%), respectively. Analysis on the combined effects of genetic variation showed that subjects who were both ADD1 Trp/Trp and ACE Del/Del homozygotes had significantly higher systolic blood pressure (p=0.01). Similarly, ACE Del/Del homozygotes who had AGT Met allele had significantly higher diastolic blood pressure (p<0.001). However, in single-gene analyses, no association was found between any specific genotype and blood pressure. In subjects with low sodium intake, ADD1 Trp/Trp homozygotes had significantly higher systolic blood pressure than subjects who had ADD1 Gly allele (138 mmHg vs. 127 mmHg, p=0.03). There was no difference in blood pressure between ADD1 Trp/Trp and ADD1 Gly/Gly or Gly/Trp, in subjects with high sodium intake. In summary, this study shows that interactions between the ADD1, AGT and ACE genes influence systolic and diastolic blood pressure in elderly subjects, and dietary sodium intake can modulate the effects of ADD1 Gly460Trp polymorphisms on systolic blood pres sure.

Genome-wide Association Study Identification of a New Genetic Locus with Susceptibility to Osteoporotic Fracture in the Korean Population

  • Hwang, Joo-Yeon;Lee, Seung-Hun;Go, Min-Jin;Kim, Beom-Jun;Kim, Young-Jin;Kim, Dong-Joon;Oh, Ji-Hee;Koo, Hee-Jo;Cha, My-Jung;Lee, Min-Hye;Yun, Ji-Young;Yoo, Hye-Sook;Kang, Young-Ah;Oh, Ki-Won;Kang, Moo-Il;Son, Ho-Young;Kim, Shin-Yoon;Kim, Ghi-Su;Han, Bok-Ghee;Cho, Yoon-Shin;Koh, Jung-Min;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Osteoporotic fracture (OF), along with bone mineral density (BMD), is an important diagnostic parameter and a clinical predictive risk factor in the assessment of osteoporosis in the elderly population. However, a genome-wide association study (GWAS) on OF has not yet been clarified sufficiently. To identify OF-associated genetic variants and candidate genes, we conducted a GWAS in a population-based cohort (Korean Association Resource [KARE], n=1,427 [case: 288 and control: 1139]) and performed a de novo replication study in hospital-based individuals (Asan and Catholic Medical Center [ACMC], n=1,082 [case: 272 and control: 810]). In a combined meta-analysis, a newly identified genetic locus in an intergenic region at 10p11.2 (near genes FZD8 and ANKRD30A ) showed the most significant association (odd ratio [OR] = 2.00, 95% confidence interval [CI] = 1.47~2.74, p=$1.27{\times}10^{-6}$) in the same direction. We provide the first evidence for a common genetic variant influencing OF and genetic information for further investigation in bone metabolism.

Studies on the Resistance of Rice Varieties to Biotypes of the Brown Planthopper, Nilaparvata lugens $ST{\AA}L$ (벼멸구생태형(生態型)에 대한 수도품종(水稻品種)의 저저성(抵抵性)에 관한 연구(硏究))

  • Kim, Jeong-Wha;Kim, Doo-Ho
    • Korean journal of applied entomology
    • /
    • v.24 no.4 s.65
    • /
    • pp.209-218
    • /
    • 1986
  • This study was performed to evaluate the differences in resistance of rice varieties to biotypes of the brown planthopper (BPH), capable of surving on the Milyang 30 and Milyang 63 varieties which have Bph 1 and bph 2 gene for resistance, respectively. The rice varieties tested were Milyang 30, Cheongcheong, Milyang 63 and Gaya which have been reported as having resistant genes for the BPH. The check varieties were Chucheong and Sangpoong which have no resistant gene. The degree of resistance to the BPH biotypes indicated that Milyang 30, Cheongcheong, Milyang 63 and Gaya varieties were highly resistant to the biotype 1. But their reactions against biotype 2 and 3 were variable, namely Milyang 30 and Cheongcheong were susceptible to biotype 2, and Milyang 63 was susceptible to biotype 3. In the esterase isozyme patterns of brown rice the bands of ${\beta}-1,\;{\beta}-3\;and\;{\beta}-5$ were detected in Chucheong and Sangpoong, while the bands of ${\alpha}-1,\;{\beta}-2\;and\;{\beta}-5$ were detected in the test varieties which have genes for resistance. However, the bands of ${\beta}-5$ in Milyang 63 and Gaya were stronger than those of Milyang 30 and Cheongcheong varieties. In the root of 10-days seedling, the esterase bands of ${\alpha}-2,\;{\beta}-2\;{\beta}-4\;and\;{\beta}-5$ were detected in Chucheong and Sangpoong, while the bands of ${\alpha}-1,\;{\beta}-1\;{\beta}-3\;and\;{\beta}-5$ were detected in the tested different varieties. But the bands of ${\alpha}-1\;and\;{\beta}-5$ in Milyang 63 and Gaya were stronger than those of Milyang 30 and Cheongcheong varieties.

  • PDF

Enhanced Growth Inhibition by Combined Gene Transfer of p53 and $p16^{INK4a}$ in Adenoviral Vectors to Lung Cancer Cell Lines (폐암세포주에 대한 p53 및 $p16^{INK4a}$의 복합종양억제유전자요법의 효과)

  • Choi, Seung -Ho;Park, Kyung-Ho;Seol, Ja-Young;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.67-75
    • /
    • 2001
  • Background : Two tumor suppressor genes, p53 and p16, which have different roles in controlling the cell cycle and inducing apoptosis, are frequently inactivated during carcinogenesis including lung cancer. Single tumor suppressor gene therapies using either with p53 or p16 have been studied extensively. However, there is a paucity of reports regarding a combined gene therapy using these two genes. Methods : The combined effect of p53 and p16 gene transfer by the adenoviral vector on the growth of lung cancer cell lines and its interactive mechanism was investigated. Results : An isobologram showed that the co-transduction of p53 and p16 exhibited a synergistic growth in hibitory effect on NCI H358 and an additive effect on NCI H23. Cell cycle analysis demonstrated the induction of a synergistic G1/S arrest by a combined p53 and p16 transfer. This synergistic interaction was again confirmed in a soft agar confirmed in a soft agar clonogenic assay. Conclusion : These observations suggest the potential of a p53 and p16 combination gene therapy as another potent strategy in cancer gene therapy.

  • PDF

Species-specific Expression of Rpia Transcript in Cumulus-oocyte-complex (난자-난구세포 복합체에서 발현하는 Rpia 유전자의 종 특이적 발현)

  • Kim, Yun-Sun;Yoon, Se-Jin;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • Objective: We previously identified differentially expressed genes (DEGs) between germinal vesicle (GV) and metaphase II (MII) mouse oocyte. The present study was accomplished as a preliminary study to elucidate the role of ribose 5-phosphate isomerase A (Rpia), the essential enzyme of the pentose phosphate pathway (PPP), in oocyte maturation. We observed expression of Rpia in the mouse and porcine oocytes. Methods: Expression pattern of the 11 MII-selective DEGs in various tissues was evaluated using RT-PCR and selected 4 genes highly expressed in the ovary. According to the oocyte-selective expression profile, we selected Rpia as a target for this study. We identified the porcine Rpia sequence using EST clustering technique, since it is not yet registered in public databases. Results: The extended porcine Rpia nucleotide sequence was submitted and registered to GenBank (accession number EF213106). We prepared primers for porcine Rpia according to this sequence. In contrast to the oocyte-specific expression in the mouse, Rpia was expressed in porcine cumulus and granulosa cells as well as in oocytes. Conclusion: This is the first report on the characterization of the Rpia gene in the mouse and porcine ovarian cells. Results of the present study suggest that the mouse and porcine COCs employ different mechanism of glucose metabolism. Therefore, the different metabolic pathways during in vitro oocyte maturation (IVM) in different species may lead different maturation rates. It is required to study further regarding the role of Rpia in glucose metabolism of oocytes and follicular cell fore exploring the regulatory mechanism of oocyte maturation as well as for finding the finest culture conditions for in vitro maturation.