• Title/Summary/Keyword: Generators

Search Result 1,892, Processing Time 0.07 seconds

Coordinated Virtual Inertia Control Strategy for D-PMSG Considering Frequency Regulation Ability

  • Shi, Qiaoming;Wang, Gang;Ma, Weiming;Fu, Lijun;Wu, You;Xing, Pengxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1556-1570
    • /
    • 2016
  • In the process of virtual inertia control (VIC), the frequency regulation capability of the directly-driven wind turbine with permanent-magnet synchronous generator (D-PMSG) on wind farm is related to its rotor kinetic energy and capacity margin. This paper proposes the method for assessing the D-PMSG frequency regulation capability and defining its coefficient according to the operating state of wind power generators. In addition, the calculating method of parameters in VIC is also discussed according to the principles of primary frequency regulation and inertia response of synchronous generators. Then, by introducing the capability coefficient into the proportion-differential virtual inertia control (PD-VIC) for power coordination, a coordinated virtual inertia control (C-VIC) strategy is developed, with the consideration of the difference in frequency regulation capability between wind power generators. The proposed control method can not only give full play to the frequency regulation capability of wind power generators, decrease the movements of the pitch angle control system but also bring some self-coordination capability to different wind power generators thus to avoid a secondary drop in system frequency. The simulations and experiments prove the proposed method to be effective and practicable.

Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator (스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

The Characteristics of the Output Voltage Ferroelectrics for High Voltages Pulse Generators (고전압 펄스 발생기를 위한 강유전체의 전압 출력 특성)

  • Jang, Dong-Gwan;Choi, Sun-Ho;Hwang, Sunl-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1408-1412
    • /
    • 2013
  • High power pulse generating technology is to accumulate the energy for relatively long and then to create a strong force by emitting the energy very fast. High power pulse generating technology has recently been using in various fields like environments, industry, research, military and so on. Numerous studies about high power pulse generators have already been performed and commercialized in various conditions. However, in aspect of their size and weight, it is hard to carry the generators which currently have been developed. For these reasons, din nations like America or Russia, the researches have been performed for Ferroelectric Generators(FEG), which have relatively simple structure and are economical. To realize the ferroelectric generator, in this study, we selected the PZTs which have different physical properties respectively, and then shocked them using explosives. The PZT samples with volumes of $0.31{\sim}0.94cm^3$ were depolarized by shocked and produced the waveform that have peak voltages of 4.28 ~ 15kV. The lowest relative permittivity sample generated much higher peak voltage. And sudden voltage drops which seem to be caused by dielectric breakdown were observed in some experiments using low young's modulus samples. Also, increase in thickness led to increase in peak voltage, but the ratio of the voltage rise did not reach the ration of the thickness increase.

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

The Influence of Excluding No-load Cost from SMP on Cost Reduction Incentive of Generators (계통한계가격(SMP)에서 무부하비용 제외가 발전사 비용절감 유인에 미치는 영향)

  • Kim, Myung Yun;Cho, Sung Bong
    • Environmental and Resource Economics Review
    • /
    • v.23 no.4
    • /
    • pp.617-641
    • /
    • 2014
  • Korean electricity market is a Cost-Based Pool (CBP) designed to minimize electricity production cost through cost by providing cost reduction incentives to generators. Generation companies have shown diverse efforts to reduce costs in CBP market such as procuring low-price fuels, installing high efficiency gas turbine and constructing power plants near the heavy-load site. Recently, as a way to improve CBP market, a proposal to exclude no-load cost from System Marginal Price (SMP) and to compensate generators ex post was suggested to Korea Power Exchange. This study analyzes the impact of excluding no-load cost from SMP on the cost reduction incentive of generators. We found that excluding no-load cost from SMP enhances the likelihood of decreasing the cost reduction incentives of LNG combined-cycle generators lying on the price-setting range.

Radiation safety management for diagnostic radiation generators and employees in animal hospitals in Korea (동물병원의 진단용 방사선 발생장치 및 방사선종사자 안전관리 실태 조사)

  • An, Hyo-Jin;Kim, Chung-Hyun;Kwon, Young-Jin;Kim, Don-Hwan;Wee, Sung-Hwan;Moon, Jin-San
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.151-157
    • /
    • 2014
  • A nationwide survey on radiation safety management in Korean animal hospitals was conducted. By 2013, 53 radiation generators were registered as veterinary medical devices (41 X-ray generators and 12 computed tomography scanners). Additionally there were six approved laboratories for radiation equipment and protection facility, and five approved laboratories for radiation exposure of employees, respectively. By March 2013, 2,030 out of 3,829 animal hospitals operated radiation-generating devices. Among these devices, 389 (19.2%) out of 2,030 were not labeled with the model name and 746 (36.7%) were not labeled with production dates. Thus, most veterinary X-ray generators were outdated (42.6%) and needed replacements. When periodic inspections of 2,018 animal hospitals were performed after revision of the Veterinarians Act in 2011, the hospitals were found to be equipped with appropriate radiation generators and protection facilities. Among 2,545 employees exposed to radiation at the hospitals, 93.9% were veterinarians, 4.3% were animal nurse technicians, and 18% held other positions. Among 169 employees supervised by administrators, none of those had a weekly maximum operating load that exceeded $10mA{\cdot}min$. This study suggests that the radiation safety management system of animal hospitals was general good.

A Comparison of Three Fixed-Length Sequence Generators of Synthetic Self-Similar Network Traffic (Synthetic Self-Similar 네트워크 Traffic의 세 가지 고정길이 Sequence 생성기에 대한 비교)

  • Jeong, Hae-Duck J.;Lee, Jong-Suk R.
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.899-914
    • /
    • 2003
  • It is generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern telecommunication networks than Poisson Processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. Three generators of pseudo-random self-similar sequences, based on the FFT〔20〕, RMD〔12〕 and SRA methods〔5, 10〕, are compared and analysed in this paper. Properties of these generators were experimentally studied in the sense of their statistical accuracy and times required to produce sequences of a given (long) length. While all three generators show similar levels of accuracy of the output data (in the sense of relative accuracy of the Horst parameter), the RMD- and SRA-based generators appear to be much faster than the generator based on FFT. Our results also show that a robust method for comparative studies of self-similarity in pseudo-random sequences is needed.

A Study on Protection of Generator Asynchronization by Impedance Relaying (임피던스 계전기를 이용한 발전기 비동기 투입 보호 연구)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2000-2006
    • /
    • 2011
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. Where calculation method of protection settings and Logic for Protection of Generator Asynchronization will be recommended, A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection this paper describes an improved backup protection coordination scheme using a new Logic that will be suggested.

Determining the Optimal Capacities of Distributed Generators Installed in A Stand-alone Microgrid Power System (독립형 마이크로그리드 내 분산전원별 최적용량 결정 방법)

  • Ko, Eun-Young;Baek, Ja-Hyun;Kang, Tae-Hyuk;Han, Dong-Hwa;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In recent years, the power demand has been increasing steadily and the occurrence of maximum power demand has been moving from the summer season to the winter season in Korea. And since the control of electric power supply and demand is more important under those situations, a micro-grid system began to emerge as a keyword for the sTable operation of electric power system. A micro-gird power system is composed of various kinds of distributed generators(DG) such as small diesel generator, wind turbine, photo-voltaic generator and energy storage system(ESS). This paper introduces a method to determine the optimal capacities of the distributed generators which are installed in a stand-alone type of microgrid power system based on the fundamental proportion of diesel generator. At first, the fundamental proportion of diesel generator will be determined by changing from 0 to 50 percent. And then we will optimize the capacities of renewable energy resources and ESS according to load patterns. Lastly, after recalculating the capacity of ESS with consideration for SOC constraints, the optimal capacities of distributed generators will be decided.

Concept Development and Review of Current Technical Issues for SFR Steam Generator (소듐냉각 고속로용 증기발생기 기술분석 및 개념개발)

  • Nam, Ho-Yun;Kim, Jong-Bum;Lee, Jae-Han;Park, Chang-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1083-1090
    • /
    • 2011
  • A steam generator poses many difficulties during the development of a sodium-cooled fast reactor because of the sodium-water-reaction problems. Until now, several types of steam generators have been developed, but the specifications of these generators differed in each country. Moreover, even if a country had developed a steam generator, it was not used in the subsequent reactor because the current techniques were not stabilized to select the proper steam generator. As a common development, the Benson steam cycle with few welding locations and high economical efficiency may be adopted. Moreover, the design is dwelled on the convenience of inspection, detection, control, and maintenance for the wear caused by sodiumwater reactions. The specifications of the designed steam generators were reviewed and the current technical problems for steam generators were analyzed. Concepts were proposed to overcome the current technical problems for steam generators.