• Title/Summary/Keyword: Generator trip

Search Result 37, Processing Time 0.027 seconds

Research on a Stability of Feedwater Control System after Stretched Power Uprate and Replacement Steam Generator for Ulchin Units 1&2 (울진1,2호기 출력최적화 및 증기발생기 교체가 주급수 제어계통 안정도에 미치는 영향연구)

  • Yoon, Duk-Joo;Kim, In-Hwan;Kim, Sang-Yeol
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.14-20
    • /
    • 2012
  • Full load rejection capability of nuclear power plant depends primarily on steam dump capacity (SDCAP) and steam generator level control capability. Recently, Ulchin Units 1&2 have performed stretched power uprate (SPU) and replacement steam generator (RSG) projects, which increase the power by 4.5 percent. They change major design or operating parameters and especially reduces steam dump capacity at full power due to increase of the steam flow. The reduction of SDC after SPU results in degradation of heat removal capability in full load rejection transients. Therefore, we should perform evaluation to determine whether reactor trips occur in large load rejection transients. Uchin Units 1&2 have experienced full load rejection (FLR) three times from 2004 to 2010. Operating data from the plant occurrence of FLR at Ulchin Units 1&2 showed that steam generator (SG) level transients were limiting in point of reactor trip. However the plant had never reached reactor trip in the FLR and successfully continued in house load operation. The parameters and setpoints for the SG will be changed if the SG is replaced. Therefore, we evaluated the appropriateness of steam dump, main feedwater and steam generator water level control system preventing the plant from reactor trip in case of FLR by the parameter sensitivity study whether SG water level operated smoothly after SPU and RSG projects.

Effect on Vibration of Start-up Condition and Retrofit of Steam Turbines (증기터빈의 기동조건과 성능개선이 터빈의 진동에 미치는 영향)

  • Lee, Hyuk Soon;Chung, Hyuk Jin;Song, Woo Sok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • The analysis shows that the vibration is one of the main reasons of turbine failure. Especially, the problems caused by vibration occur right after retrofit of the turbine-generator and restarting the turbine. Through the case study of high vibration caused by after the turbine trip and restart, turbine vibration was identified to be influenced by startup condition. Turbine startup at high casing temperature right after unscheduled turbine trip cause radial expansion in rotor by contraction in axial direction, while casing continues to contract by steam flowing into casing. Consequently, gap between rotor and casing decrease until to metal contact to cause high vibration. Through the case study of high vibration of turbine-generator system after generator retrofit, it was identified that generator replacement could cause high vibration in turbine-generator system if the influence of generator replacement on entire system was not considered properly. To prevent startup delay caused by high vibration, it is important to keep the gaps at the design standard and start the turbine after thermal equilibrium.

Wide-area Frequency-based Tripped Generator Locating Method for Interconnected Power Systems

  • Kook, Kyung-Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.776-785
    • /
    • 2011
  • Since the Internet-based real-time Global Positioning System(GPS) synchronized widearea power system frequency monitoring network (FNET) was proposed in 2001, it has been monitoring the power system frequency in interconnected United States power systems and numerous interesting behaviors have been observed, including frequency excursion propagation. We address the consistency of a frequency excursion detection order of frequency disturbance recorders in FNET in relation to the same generation trip, as well as the ability to recreate by power systems dynamic simulation. We also propose a new method, as an application of FNET measurement, to locate a tripped generator using power systems dynamic simulation and wide-area frequency measurement. The simulation database of all the possible trips of generators in the interconnected power systems is created using the off-line power systems dynamic simulation. When FNET detects a sudden drop in the monitoring frequency, which is most likely due to a generation trip in power systems, the proposed algorithm locates a tripped generator by finding the best matching case of the measured frequency excursion in the simulation database in terms of the frequency drop detection order and the time of monitoring points.

Design requirements for Generator Circuit Breaker (원자력발전소의 발전기차단기 설계요건 검토)

  • Chi, Mun-Goo;Han, Sung-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.371-373
    • /
    • 2001
  • Main functions of Generator Circuit Breaker(GCB) is cut the generator off from the main transformers and the aux. transformers when plant trip or startup. In this paper, the design requirements For GCB of nuclear power plant is examined. NRC presented the area of review, acceptance criteria and review procedures of GCB in the SRP(Standard Review Plan). In Korea, APR1400 adapted the GCB in main power system.

  • PDF

The C Language Auto-generation of Reactor Trip Logic Caused by Steam Generator Water Level Using CASE Tools

  • Kim, Jang-Yeol;Lee, Jang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 1999
  • The purpose is to produce a model of nuclear reactor trip logic caused by the steam generator water level of Wolsong 2/3/4 unit through an activity chart and a statechart and to produce C language automatically using Statechart-based Formalism and Stalemate MAGNUM toolset suggested by David Harel Formalism. It was worth attempting auto-generation of C language though we manually made Software Requirement Specification(SRS) for safety-critical software using statechart-based formalism. Most of the phases of the software life-cycle except the software requirement specification of an analysis phase were generated automatically by Computer Aided Software Engineering (CASE) tools. It was verified that automatically produced C language has high productivity, portability, and quality through the simulation.

  • PDF

Improvement of Transient Characteristics of Brush-less Type Synchronous Generator for Emergency Driven by Internal-Combustion Engine (내연기관 구동 비상용 브러시리스형 동기발전기의 과도특성 개선)

  • An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.268-272
    • /
    • 2016
  • A brush-less type synchronous generator is driven by an internal-combustion engine that is used for emergency source. This kind of generator has to maintain output voltage in a range of some degree under the abrupt load irregular conditions such as a full load trip. This paper suggests a suppression method of increasing the output voltage over the rating. Automatic voltage regulator detects excessive rising of output voltage of the generator and supplies the signals to a switch installed in the rotating exciter through the photo-coupler. The current of main field rapidly decreases by additional resistor of the main filed circuit. Therefore, the output voltage of the generator is maintained effectively. The experimental results verified that the excessive value of the output voltage is limited in the range of 7% of the rated voltage.

Closed Loop System Identification of Steam Generator Using Neural Networks (신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명)

  • Park, Jong-Ho;Han, Hoo-Seuk;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

A simulation test of lone rejection for steam turbine generator in nuclear power plant (원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Tae-Woon;Lee, Ki-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2301-2303
    • /
    • 2003
  • A steam turnine in thermal/nuclear power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy. After synchronization in parallel with the power system, generator output increases according as the governor, that is the controller, increases steam flow into turbine. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip setpoint by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a simulation test of generator load rejection to be implemented on the turbine governor in a 600MW nuclear power plant before its startup.

  • PDF

A Study on the PLD Circuit Design of Pattern Generator (패턴 생성기의 PLD 회로설계에 관한 연구)

  • Roh, Young-Dong;Kim, Joon-Seek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2004
  • Usually, according as accumulation degree of semi-conductor element increases, dynamic mistake test time increases sharply, and use of pattern generator is essential at manufacturing process to solve these problem. In this paper, we designed the PLD(Programmable Logic Device) circuit of pattern generator to examine dynamic mistake of semi-conductor element. Such all item got result that is worth verified action of return trip and function through simulation, and satisfy.