• 제목/요약/키워드: Generator Rotor

검색결과 509건 처리시간 0.037초

공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계 (Rotordynamic design of a turbogenerator supported by air foil bearings)

  • 김영철;안국영;박무룡;박준영;최범석;이안성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

An Optimal Maximum Power Point Tracking Algorithm for Wind Energy System in Microgrid

  • Nguyen, Thanh-Van;Kim, Kyeong-Hwa
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.382-383
    • /
    • 2018
  • To increase the efficiency of a wind energy conversion system (WECS), the maximum power point tracking (MPPT) algorithm is usually employed. This paper proposes an optimal MPPT algorithm which tracks a sudden wind speed change condition fast. The proposed method can be implemented without the prior information on the wind turbine parameters, generator parameters, air density or wind speed. By investigating the directions of changes of the mechanical output power in wind turbine and rotor speed of the generator, the proposed MPPT algorithm is able to determine an optimal speed to achieve the maximum power point. Then, this optimal speed is set to the reference of the speed control loop. As a result, the proposed MPPT algorithm forces the system to operate at the maximum power point by using a three-phase converter. The simulation results based on the PSIM are given to prove the effectiveness of the proposed method.

  • PDF

직렬접속 자기여자 권선형 유도전기의 정상상태해석 (Steady State Analysis of Series-Connected Self-Excited Wound Type Induction Generators)

  • 홍문석;좌종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.867-869
    • /
    • 2000
  • This paper describes the steady state performance of a self-excited wound type induction generator with stator and rotor windings connected in series along with excitation capacitors. For this purpose a mathematical model is developed by means of the well known generalized machine theory utilizing d-q axis orthogonal transformation. This model can be used to analyze short shunt and long shunt generators as well as shunt generator and the algorithm for this analysis is persented. The characteristics of generators are compared one another by using parameters which are validated by Mostafa et al.

  • PDF

서인천 복합화력 발전소의 PSS 파라메터 Tuning (Field test Results for PSS Parameter Tuning in Seo-Incheon Power Plant)

  • 신정훈;김태균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1143-1146
    • /
    • 1998
  • Static excitation systems with high gain and fast response times greatly aid transient stability. but at the same time tend to reduce small signal stability. The objective of the power system stabilizer(PSS) control is to provide a positive contribution to damping of the generator rotor angle swings, which are in a broad range of frequencies in the power system. Therefore, this paper shows the field test results for the GE's EX2000 PSS tuning on units at Seo-Incheon power plant. The test is to verify that the PSS response meets GE's design, criteria. The responses of generator terminal voltage, active power, field voltage and current were analyzed and PSS gain was tuned by 10 finally.

  • PDF

와전류를 이용한 발열기의 개발 (Development of Heater Using Eddy Current)

  • 윤동원;박희창;홍용주;이성휘;김병인;함상용
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.565-572
    • /
    • 2009
  • In this research, a heater using eddy current for generator is designed and some analysis is performed to validate the system. FEM (finite element method) is used for analysing eddy current phenomena at the various speed of rotor with permanent magnet. A real heater system is fabricated. Some experiment is also performed to validate the analysis result. Through the experiment, the FE analysis is validated and we found that the efficiency of developed heater is over 94%.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

MATLAB&SIMULINK에서 변압기 결선에 따른 풍력발전 시스템의 영향 평가 (Evaluation on Effect of Wind Power Generation System According to Transformer Winding Connection at Matlab&Simulink)

  • 안해준;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.772-773
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind power generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

스위치드 릴럭턴스 발전기의 스위칭에 따른 특성 (Characteristics Analysis According to Switching of Switched Reluctance Generator)

  • 오재석;오주환;권병일
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1356-1361
    • /
    • 2008
  • A switched reluctance generator(SRG) has simple magnetic structure, and needs simple power electronic driving circuit. But, a SRG are no windings or permanent magnets on the rotor, and there are concentrated windings placed around each salient pole on the stator. Because of the characteristics of time-sharing excitation, the control of SRG is very flexible. And there are several parameters for controlling SRG, such as switch turn-on angle, switch turn-off angle, and exciting voltage and controlling mode, all these will affect the generation greatly. A SRG has positive torque at increasing inductance region and negative torque at decreasing inductance region. In this paper, we studied characteristics about the switch turn-on and off angles according to switch method for constant output voltage of the fixed speed SRG. It is the acoustic noise and torque ripple characteristics. Characteristics for a switch angle and method are presented by experiment using a 50W SRG with 12/8 poles.

Coordinated Control of DFIG System based on Repetitive Control Strategy under Generalized Harmonic Grid Voltages

  • Nian, Heng;Cheng, Chenwen;Song, Yipeng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.733-743
    • /
    • 2017
  • This paper develops a coordinated control strategy of the doubly fed induction generator (DFIG) system based on repetitive control (RC) under generalized harmonic grid voltage conditions. The proposed RC strategy in the rotor side converter (RSC) is capable of ensuring smooth DFIG electromagnetic torque that will enable the possible safe functioning of the mechanical components, such as gear box and bearing. Moreover, the proposed RC strategy in the grid side converter (GSC) aims to achieve sinusoidal overall currents of the DFIG system injected into the network to guarantee satisfactory power quality. The dc-link voltage fluctuation under the proposed control target is theoretically analyzed. Influence of limited converter capacity on the controllable area has also been studied. A laboratory test platform has been constructed, and the experimental results validate the availability of the proposed RC strategy for the DFIG system under generalized harmonic grid voltage conditions.

풍력 유도발전기의 여자 축전지에 따른 고주파 증폭에 관한 기술 동향 (Technical Trend on Excitation Capacitors on Harmonic Amplification of Wind Induction Generator)

  • 노상필;박정석;이영길;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1976-1977
    • /
    • 2007
  • This paper introduce the electrical quantities of a three-phase-connected wind induction generator (WIG) under sudden connection of static loads. An intelligent power-system recorder/monitor is employed to measure threephase voltages and currents of the studied system at WIG's terminals and load's terminals for 5 minutes. A laboratory 300 W wound-rotor induction machine driven by a blushless DC motor is utilized as the studied WIG. Since the generated harmonic currents are randomly varied, total harmonic distortion (THD) of current using cumulative probability density function is employed to determine the penetration of harmonic distortion. The results show that the harmonic currents generated by the studied WIG may be severely amplified to a high level by the connected self-excited capacitance at the stator's terminals.

  • PDF