최근 빠른 유행의 변화 속에서 디자인의 변화는 패션기업의 매출에 큰 영향을 미치기 때문에 기업들은 신제품디자인 선택에 신중할 수밖에 없다. 최근 인공지능 분야의 발달에 따라 패션시장에서도 소비자들의 선호도를 높이기 위해 다양한 기계학습을 많이 활용하고 있다. 우리는 선호도와 같은 추상적인 개념을 수치화함으로써 신제품 개발에 신뢰성을 높이는 부분에 기여하고자 한다. 이를 위해 3가지 적대적 생성 신경망(Generative adversial netwrok, GAN)을 통하여 기존에 없는 새로운 이미지를 생성하고, 미리 훈련된 합성곱 신경망(Convolution neural networkm, CNN)을 이용하여 선호도라는 추상적인 개념을 수치화시켜 비교하였다. 심층 컨볼루션 적대적 생성 신경망(Deep convolutional generative adversial netwrok, DCGAN), 점진적 성장 적대적 생성 신경망(Progressive growing generative adversial netwrok, PGGAN), 이중 판별기 적대적 생성 신경망(Dual Discriminator generative adversial netwrok, D2GAN)의 3가지 방법을 통해 새로운 이미지를 생성하였고, 판매량이 높았던 제품으로 훈련된 합성곱 신경망으로 유사도를 비교, 측정하였다. 측정된 유사도의 정도를 선호도로 간주하였으며 실험 결과 D2GAN이 DCGAN, PGGAN에 비해 상대적으로 높은 유사도를 보여주었다.
본 논문에서는 함정전투체계의 EOTS나 IRST에서 획득한 영상을 초고해상도 영상으로 복원한다. 저해상도에서 초고해상도의 영상을 생성하는 생성 모델과 이를 판별하는 판별 모델로 구성된 생성적 적대 신경망을 이용하고, 다양한 학습 파라미터의 변화를 통한 최적의 값을 제안한다. 실험에 사용되는 학습 파라미터는 crop size와 sub-pixel layer depth, 학습 이미지 종류로 구성되며, 평가는 일반적인 영상 품질 평가 지표에 추가적으로 특징점 추출 알고리즘을 함께 사용하였다. 그 결과, Crop size가 클수록, Sub-pixel layer depth가 깊을수록, 고해상도의 학습이미지를 사용할수록 더 좋은 품질의 영상을 생성한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권5호
/
pp.1141-1162
/
2024
Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5594-5615
/
2019
Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2115-2127
/
2021
Although significant progress has been made in synthesizing visually realistic face images by Generative Adversarial Networks (GANs), there still lacks effective approaches to provide fine-grained control over the generation process for semantic facial attribute editing. In this work, we propose a novel cross channel self-attention based generative adversarial network (CCA-GAN), which weights the importance of multiple channels of features and archives pixel-level feature alignment and conversion, to reduce the impact on irrelevant attributes while editing the target attributes. Evaluation results show that CCA-GAN outperforms state-of-the-art models on the CelebA dataset, reducing Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) by 15~28% and 25~100%, respectively. Furthermore, visualization of generated samples confirms the effect of disentanglement of the proposed model.
심층 생성 모델의 일종인 Generative Adversarial Network(GAN)과 Variational AutoEncoder(VAE)는 비병렬 학습 데이터를 사용한 음성 변환에 새로운 방법론을 제시하고 있다. 특히, Conditional Cycle-Consistent Generative Adversarial Network(CC-GAN)과 Cycle-Consistent Variational AutoEncoder(CycleVAE)는 다수 화자 사이의 음성 변환에 우수한 성능을 보이고 있다. 그러나, CC-GAN과 CycleVAE는 비교적 적은 수의 화자를 대상으로 연구가 진행되어왔다. 본 논문에서는 100 명의 한국어 화자 데이터를 사용하여 CC-GAN과 CycleVAE의 음성 변환 성능과 확장 가능성을 실험적으로 분석하였다. 실험 결과 소규모 화자의 경우 CC-GAN이 Mel-Cepstral Distortion(MCD) 기준으로 4.5 % 우수한 성능을 보이지만 대규모 화자의 경우 CycleVAE가 제한된 학습 시간 안에 12.7 % 우수한 성능을 보였다.
We present a method for transmitting 3D object information in real time in a telepresence system. Three-dimensional object information consists of a large amount of point cloud data, which requires high performance computing power and ultra-wideband network transmission environment to process and transmit such a large amount of data in real time. In this paper, multiple users can transmit object motion and facial expression information in real time even in small network bands by using GANs (Generative Adversarial Networks), a non-supervised learning machine learning algorithm, for real-time transmission of 3D point cloud data. In particular, we propose the creation of an object similar to the original using only the feature information of 3D objects using conditional GANs.
홀로그램 기술은 3차원 객체의 생성, 전송, 재생 관점에서 기술 개발이 활발히 수행되고 있지만 현재 여러 가지 한계로 인하여 답보상태에 머물러 있다. VR, AR을 넘어 새로운 기술의 요구에 부합하기 위해 중간 단계로 유사홀로그램 시장이 성장하고 있는 추세다. 홀로그램의 기술의 핵심은 point cloud 형태의 방대한 3차원 데이터를 생성하고 그 방대한 데이터를 통신망을 통해 실시간으로 전송하여 목적지에서 원본과 같이 재생하는 것이다. 본 연구에서는 방대한 3차원 데이터를 실시간으로 전송하기 위한 방법으로 생성된 3차원 객체 정보의 특징점을 전송하여 목적지에서 원본과 비슷한 형태의 객체로 재생하는 방법에 대해 연구한다.
Generative Adversarial Networks (GANs) models have developed rapidly due to the emergence of various variation models and their wide applications. Despite many recent developments in GANs, mode collapse, and instability are still unresolved issues. To address these problems, we focused on the fact that a single GANs model itself cannot realize local failure during the training phase without external standards. This paper introduces a novel training process involving multiple GANs, inspired by auction mechanisms. During the training, auxiliary performance metrics for each GANs are determined by the others through the process of various auction methods.
In spite of a rapid development in the quality of built-in mobile cameras, their some physical restrictions hinder them to achieve the satisfactory results of digital single lens reflex (DSLR) cameras. In this work we propose an end-to-end deep learning method to translate ordinary images by mobile cameras into DSLR-quality photos. The method is based on the framework of generative adversarial networks (GANs) with several improvements. First, we combined the U-Net with DenseNet and connected dense block (DB) in terms of U-Net. The Dense U-Net acts as the generator in our GAN model. Then, we improved the perceptual loss by using the VGG features and pixel-wise content, which could provide stronger supervision for contrast enhancement and texture recovery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.