• 제목/요약/키워드: Generative

검색결과 907건 처리시간 0.033초

Few-Shot Image Synthesis using Noise-Based Deep Conditional Generative Adversarial Nets

  • Msiska, Finlyson Mwadambo;Hassan, Ammar Ul;Choi, Jaeyoung;Yoo, Jaewon
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.79-87
    • /
    • 2021
  • In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.

Generative AI and its Implications for Modern Marketing: Analyzing Potential Challenges and Opportunities

  • Yoo, Seung-Chul;Piscarac, Diana
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.175-185
    • /
    • 2023
  • As the era of ChatGPT and generative AI technologies unfolds, the marketing industry stands on the precipice of a paradigm shift. Innovations such as GPT-4, DALL-E 2, and Mid-journey Stable Diffusion possess the capacity to dramatically transform the methods by which advertisers reach and engage with customers. The potential applications of these advanced tools herald a new age for the marketing and advertising sectors, offering unprecedented opportunities for growth and optimization. Nevertheless, the rapid adoption of generative AI within these industries presents a unique set of challenges, particularly for organizations that lack the necessary technological infrastructure and human capital to effectively leverage these innovations. As a result, a competitive crisis may emerge, exacerbating existing disparities between well-equipped enterprises and their less technologically adept counterparts. In this article, we undertake a comprehensive exploration of the implications of generative AI for the future of marketing, examining both its potential benefits and drawbacks. We consider the possible impact of these developments on the advertising and marketing industries at large, as well as the ways in which professionals operating within these fields may need to adapt to remain competitive in an increasingly AI-driven landscape. By providing a holistic overview of the challenges and opportunities associated with generative AI, this study aims to elucidate the complex dynamics at play in the ongoing evolution of the marketing and advertising sectors.

ChatGPT가 한국 공학교육에 던지는 질문: 그 의미와 과제 (ChatGPT's Questions for Korean Engineering Education: Implications and Challenges)

  • 정한별;한경희
    • 공학교육연구
    • /
    • 제26권5호
    • /
    • pp.17-28
    • /
    • 2023
  • Generative AI has arrived and it's here. Education, research, industry, and labor are all on edge about the changes it will bring. It is noteworthy that while there is a wide range of optimistic and pessimistic predictions about the impact of generative AI, there is more concern than hope when it comes to education. This paper focuses on the lack of discussion on the impact of AI in higher education. First, we reviewed the process of the emergence of generative AI and introduced how the impact of AI is being understood from various perspectives. Second, we classified work areas based on expertise and efficiency and analyzed the impact of AI on work in each area. Finally, the study found that the educational perception of generative AI and the way it is perceived for engineering education purposes can be very different. It also argued that there is a lack of active discussion and debate on areas that need to be specifically discussed around generative AI. This has led to a phenomenon known as professors' delayed indifference. We emphasized that it is time for a serious and realistic discussion on the connection and integration of AI and education.

Generative Artificial Intelligence for Structural Design of Tall Buildings

  • Wenjie Liao;Xinzheng Lu;Yifan Fei
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.203-208
    • /
    • 2023
  • The implementation of artificial intelligence (AI) design for tall building structures is an essential solution for addressing critical challenges in the current structural design industry. Generative AI technology is a crucial technical aid because it can acquire knowledge of design principles from multiple sources, such as architectural and structural design data, empirical knowledge, and mechanical principles. This paper presents a set of AI design techniques for building structures based on two types of generative AI: generative adversarial networks and graph neural networks. Specifically, these techniques effectively master the design of vertical and horizontal component layouts as well as the cross-sectional size of components in reinforced concrete shear walls and frame structures of tall buildings. Consequently, these approaches enable the development of high-quality and high-efficiency AI designs for building structures.

디지털 에셋 창작을 위한 생성형 AI 기술 동향 및 발전 전망 (Generative AI Technology Trends and Development Prospects for Digital Asset Creation)

  • 이기석;이승욱;윤민성;유정재;오아름;최인문;김대욱
    • 전자통신동향분석
    • /
    • 제39권2호
    • /
    • pp.33-42
    • /
    • 2024
  • With the recent rapid development of artificial intelligence (AI) technology, its use is gradually expanding to include creative areas and building new content using generative AI solutions, reaching beyond existing data analysis and reasoning applications. Content creation using generative AI faces challenges owing to technical limitations and other aspects such as copyright compliance. Nevertheless, generative AI may increase the productivity of experts and overcome barriers to creative work by allowing users to easily express their ideas as digital content. Thus, various types of applications will continue to emerge. As images and videos can be created using text input on a prompt, generative AI allows to create and edit digital assets quickly. We present trends in generative AI technology for images, videos, three-dimensional (3D) assets and scenes, digital humans, interactive content, and interfaces. In addition, the prospects for future technological development in this field are discussed.

생성 AI와 AI 창작물 저작권에 대한 사용자의 인식 연구: 사용자 그룹의 차이를 중심으로 (Understanding User Perception of Generative AI and Copyright of AI-Generated Outputs: focusing on differences by user group)

  • 최다혜;김정용;한다은;오창훈
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.777-786
    • /
    • 2023
  • 생성 AI의 시스템의 발전과 다양화로 인해 해당 기술의 결과물의 활용도가 높아질 것으로 예상된다. 이에 생성 AI를 활용하여 창작한 결과물을 어떻게 받아들여야 할지에 대한 사용자의 인식과 태도에 대한 이해가 중요하다. 본 연구는 생성 AI의 추후 활용도를 높이고 발생 가능한 논란에 대비하기 위해 사용자 조사를 진행하였다. 일반 사용자 집단과 디자인 관계자 집단이 참여하였으며, 사용자 관점에서 생성 AI에 대한 태도와 생성 AI를 활용한 창작물의 저작권 인식을 주제로 디자인 워크샵을 진행하였다. 정성 분석 결과, 일반인 집단은 전반적으로 생성 AI 사용에 대해 긍정적인 반면, 디자인 관계자 집단은 부정적인 인식을 갖는 것으로 나타났다. 사용자들은 생성 AI의 결과물의 표절과 도용, 저작권 보호 법제화의 현실 가능성에 대한 우려를 표출했다. 한편, 생성 AI 결과물을 활용할 가능성이 높은 그룹일수록 창작자의 저작권 소유를 주장하였으며, 직장인 그룹이 생성 AI의 실무 활용 가능성을 더 높게 평가하였다. 생성 AI 결과물의 개별 만족도와 체감 관여도는 저작권에 직결되는 영향을 주지 않았다.

주얼리 디자인 교육을 위한 생성형 AI의 활용 및 학습자 경험 연구 (A Study on the Use of Generative AI and Learner Experience for Jewelry Design Education)

  • 강혜림
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.743-749
    • /
    • 2024
  • 최근 대학 교육에서 생성형 AI의 이용 추이가 활발해지고 있지만, 생성형 AI를 활용한 주얼리 디자인 교육 및 연구는 아직 미흡한 실정이다. 이에 따라 주얼리 디자인 개발 교육 및 아이데이션(ideation) 단계에서 생성형 AI를 활용한 주얼리 디자인 아이디어 발상과 표현의 시각화 가능성과 한계점, 그리고 전공 대학생의 생성형 AI의 경험 및 적용에 대해 논의하고자 한다. 생성형 AI가 학습 경험에 미치는 영향 분석을 위하여 '사용성', '유용성', '신뢰성', '만족도'의 관점에서 분석하였다. 그 결과, 생성형 AI는 피교육자에게 사용성과 유용성 측면에서 긍정적 결과를 관찰하였으며, 개인화된 맞춤형 교육과 집단지성을 활용한 효과에 대한 가능성을 확인하였다. 주얼리 디자인 교육과 생성형 AI의 접목은 융합 교육의 일환으로, 생성형 AI의 학습자 사용 경험을 분석하여 주얼리 디자인 교육의 효과적 활용을 위한 초석을 마련하는 데 본 연구의 의의가 있다. 이러한 교육은 미래 사회의 인재 양성을 위한 시대 흐름을 반영한 교육으로 학습자의 폭넓은 창의적 사고 증진에 기여할 것이다.

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

Examining the Generative Artificial Intelligence Landscape: Current Status and Policy Strategies

  • Hyoung-Goo Kang;Ahram Moon;Seongmin Jeon
    • Asia pacific journal of information systems
    • /
    • 제34권1호
    • /
    • pp.150-190
    • /
    • 2024
  • This article proposes a framework to elucidate the structural dynamics of the generative AI ecosystem. It also outlines the practical application of this proposed framework through illustrative policies, with a specific emphasis on the development of the Korean generative AI ecosystem and its implications of platform strategies at AI platform-squared. We propose a comprehensive classification scheme within generative AI ecosystems, including app builders, technology partners, app stores, foundational AI models operating as operating systems, cloud services, and chip manufacturers. The market competitiveness for both app builders and technology partners will be highly contingent on their ability to effectively navigate the customer decision journey (CDJ) while offering localized services that fill the gaps left by foundational models. The strategically important platform of platforms in the generative AI ecosystem (i.e., AI platform-squared) is constituted by app stores, foundational AIs as operating systems, and cloud services. A few companies, primarily in the U.S. and China, are projected to dominate this AI platform squared, and consequently, they are likely to become the primary targets of non-market strategies by diverse governments and communities. Korea still has chances in AI platform-squared, but the window of opportunities is narrowing. A cautious approach is necessary when considering potential regulations for domestic large AI models and platforms. Hastily importing foreign regulatory frameworks and non-market strategies, such as those from Europe, could overlook the essential hierarchical structure that our framework underscores. Our study suggests a clear strategic pathway for Korea to emerge as a generative AI powerhouse. As one of the few countries boasting significant companies within the foundational AI models (which need to collaborate with each other) and chip manufacturing sectors, it is vital for Korea to leverage its unique position and strategically penetrate the platform-squared segment-app stores, operating systems, and cloud services. Given the potential network effects and winner-takes-all dynamics in AI platform-squared, this endeavor is of immediate urgency. To facilitate this transition, it is recommended that the government implement promotional policies that strategically nurture these AI platform-squared, rather than restrict them through regulations and stakeholder pressures.

생성형 AI는 인간 관리자를 대체할 수 있는가? 자동 생성된 관리자 응답이 고객에 미치는 영향 (Can Generative AI Replace Human Managers? The Effects of Auto-generated Manager Responses on Customers)

  • 박예은;안현철
    • 지식경영연구
    • /
    • 제24권4호
    • /
    • pp.153-176
    • /
    • 2023
  • 최근 생성형 AI, 특히 ChatGPT와 같은 대화형 인공지능이 고객 서비스를 자동화하는 기술적 대안으로 주목받고 있다. 그러나 고객 서비스 자동화에 있어 현재의 생성형 AI 기술이 기존 인간 관리자를 효과적으로 대체할 수 있는지, 조건이나 환경에 따라 어떤 상황에서는 유리하고 다른 상황에서는 불리한지에 대한 연구는 아직 충분히 이루어지지 않은 상태이다. 이러한 배경에서 본 연구는 "고객 서비스 활동과 관련하여 생성형 AI가 인간 관리자를 대체할 수 있는가?"라는 질문에 답하기 위해, 음식 배달 플랫폼의 고객 온라인 리뷰에 대한 실험과 설문조사를 수행하였다. 또한 고객의 온라인 리뷰가 긍정적일 때와 부정적일 때에 따라 차이가 있는지 정교화 가능성 모델의 관점을 적용하여 가설을 도출하고 해당 가설이 지지되는지를 분석을 통해 확인하였다. 분석 결과, 긍정적인 리뷰에 대해서는 생성형 AI가 인간 관리자를 효과적으로 대체할 수 있지만, 부정적인 리뷰에 대해서는 완벽한 대체가 어려워 인간 관리자의 개입이 더 바람직한 것으로 확인되었다. 이러한 본 연구의 결과는 생성형 AI를 이용하여 고객 서비스 자동화하고자 하는 기업들에게 유의미한 실무적인 통찰을 제공해 줄 수 있을 것이다.