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Abstract 
 

Image recognition has become an increasingly important topic for its wide application. It is 
highly challenging when facing to large-scale database with large variance. The recognition 
systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. 
The recognition performance can be potentially improved if the data distribution information 
is exploited using a more sophisticated way, which usually a function over hidden variable, 
model parameter and observed data. These methods are called generative score space. In this 
paper, we propose a discriminative extension for the existing generative score space methods, 
which exploits class label when deriving score functions for image recognition task. 
Specifically, we first extend the regular generative models to class conditional models over 
both observed variable and class label. Then, we derive the mid-level feature mapping from 
the extended models. At last, the derived feature mapping is embedded into a discriminative 
classifier for image recognition. The advantages of our proposed approach are two folds. First, 
the resulted methods take simple and intuitive forms which are weighted versions of existing 
methods, benefitting from the Bayesian inference of class label. Second, the probabilistic 
generative modeling allows us to exploit hidden information and is well adapt to data 
distribution. To validate the effectiveness of the proposed method, we cooperate our 
discriminative extension with three generative models for image recognition task. The 
experimental results validate the effectiveness of our proposed approach. 
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1. Introduction 

Image recognition has been a popular research subject in computer vision with applications in 
image retrieval systems, vehicle navigation, and video analysis [1]. Among a few possible 
taxonomies, the literature present two orthogonal methods: the discriminative and the 
generative paradigms. Specifically, the discriminative approaches present the boundaries 
between different classes, instead of modeling the distribution of samples belonging to the 
same class. These methods aim to maximize the data separately. Discriminative models 
directly model the map from images to classes, by capturing the decision bounds among 
different classes. Specifically, these approaches learn a separate classifier for each class. The 
classifier is then used to predict whether the class can be assigned to the test image [2][3]. A 
variety of discriminative models, such as support vector machines (SVM) [4], discriminative 
kernel type model [5], and multiple-instance learning [6] have been applied to image 
recognition. On the other hand, the generative approaches model the distribution of data and 
tell people prior knowledge by a graph structure, which establishes correspondences between 
image feature and the model by means of conditional distribution. The generative model 
integrates hidden variables and is good at dealing with missing data, especially when little 
labeled data is available. Generative models model the distribution of images and explain how 
they can be generated. They can infer and exploit information hidden in images. The hidden 
information usually closely relates to the high level concepts of images. For instance, in 
probabilistic latent semantic analysis (pLSA) [7], the latent space representation can capture 
high-level relations within and across the class and visual modalities. Generative models 
therefore can utilize this additional high level information for image recognition. By means of 
naive Bayes classifier, they can be used to perform classification.  

Different from the above approaches, a  probabilistic branch of methods, generative score 
spaces[8][9], recently received increasing attention in image recognition. These methods 
derive the explicit feature mapping based on the probabilistic distribution over the data. 
Consequently, they are able to exploit the abilities of probability models, e.g. dealing with 
structured data and exploiting hidden variables. And then the derived features are 
straightforwardly delivered to discriminative models for image classification. So, these 
approaches can simultaneously benefit from the advantages of the two paradigms. The 
representative methods include probability product kernels [10], Kullback Leibler divergence 
based similarity [11], Fisher kernel [12], free energy score space [8], and posterior divergence 
[9]. However, all the above methods derive feature mappings from the generative model 
trained using samples from all classes, without making use of the class label. 

In this paper, we propose a discriminative extension of the existing generative score space 
methods for the image recognition task. The proposed approach can exploit class label when 
deriving score function (i.e. feature mapping), which is validated very informative in image 
classification. Specifically, we first extend the regular generative models to class conditional 
models over both observed variable and class label. Then, we derive the feature mapping from 
the extended generative models. And at last the derived features are straightforwardly 
delivered to discriminative models for image classification. The proposed extension models 
the joint distribution of the observed data x  and its label y , and applies three representative 
score space methods, i.e. free energy score space (FESS) [8] posterior divergence (PD) [9], 
and sufficient statistics (SS) [13], to the joint model respectively. In a word, different from the 
previous approaches, there are three advantages of our proposed approach: first, the resulted 
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feature mappings are very simple, i.e., the concatenation of the weighted feature mappings 
respectively derived from the class-conditional models; second, the probabilistic generative 
modeling allows us to exploit hidden information and is well adapt to data distribution; third, 
the joint model fully exploits class label information in an effective way and the derived 
features are fixed length. 

The remainder of this paper is organized as follows.  Section 2 presents the preliminaries 
and revisits some representative generative score space methods. Section 3 presents the 
framework of our proposed discriminative extension for existing generative score spaces.  
Section 4 experimentally evaluates the model for image recognition. Section 5 draws a 
conclusion.  

2. Preliminaries and Generative Score Space Revisit 

2.1 Generative Score Space 
Generative score space is a branch of probabilistic methods, which derive the explicit feature 
mapping based on the probabilistic distribution over the data from generative score space [14]. 
Generative score space methods are first proposed in [15]. These methods can be categorized 
into two classes [16] [17]: parameter-based methods and random variable based methods. 
Specifically, let ( )P θx  be the marginal distribution of an adopted generative model, where  

D∈x R  is the observed variable and  { }1= , , Kθ θ θ  is the set of K parameters. Parameter 
based methods are represented by Fisher Score (FS) [12], which derives explicit feature 
mappings from a given generative model. The feature mappings measure how a sample affects 
the parameter θ , i.e., differential operation over the log likelihood log ( )P θx  with respect to 
parameters. The advantage of this method is that it is robust to the number of hidden variables 
[16]. Also, it shows state-of-the-art performance in image recognition [18][19]. Variable 
based methods are represented by free energy score space (FESS) [8], posterior divergence 
(PD) [9] and augmented sufficient statistics (SS) [13]. For example, PD derives feature 
mappings by mainly measuring how well a sample fits the distribution of the random 
variables. 

Generative score space methods work on the variational lower bound of the log likelihood 
function of generative models. Suppose D∈x R  be the observed variable and 1{ }i N

i=x  be N  
training samples. Let the probabilistic distribution over x is modeled by a generative model 
with hidden variables H   introduced, and the model is parameterized by a vector of 
parameters θ . Suppose ( , )P Hx θ  be the joint distribution and ( )P x θ be the marginal 
distribution. The marginal distribution ( )P x θ is unavailable for most cases since the 

integration ( , )P H dH∫ x θ is intractable [20]. The common idea of methods which are 
developed to attack this problem  is to construct an approximate posterior distribution ( )tQ H  
to estimate the real posterior distribution. Then we  have  : 

 
log ( )

( ( ) ( , )) ( ( ) ( , ))

t

t t t t

P θ

Q H P H θ Q H P H θ= − +

x

KL x KL x
 (1) 

where KL denotes the Kullback–Leibler  divergence, and the second term measures the 
residual error of using ( )tQ H  to approximate ( , )tP H θx ; and takes zero when ( )tQ H  is 
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expressive enough. In this case, the first term is the exact log likelihood. In this paper, we 
focus on the variational inference [20] which resorts to a lower bound of the log likelihood as 
follows: 

 log ( ) ( ( ) ( , ))= ( , )t t t tP θ Q H P H θ F Q θ≥ − −x KL x                      (2) 

 
( , ) ( , )

[log ( ) log ( , )]i

i

i
i

Q
i

F Q θ F Q θ

E Q H P H θ

=

= −

∑

∑ x
 (3) 

where ( , )tF Q θ−  is the variational lower bound; ( , )tF Q θ  is the free energy function. A choice 
for ( )tQ H  is that it takes the same form with ( )P H   but with different parameters [20]. The 
above formulation involves two approximations which are using the approximate posterior 
distribution ( )tQ H  to approach the real posterior distribution ( , )tP H θx  and using the lower 

bound ( , )tF Q θ−  to approach the real log likelihood log ( )tP θx . The above two 
approximations will not lose generality. That is because when ( )tQ H is given by exact 
inference methods, the approximate posterior ( )tQ H  exactly equals to the real posterior 

( , )tP H θx , and the lower bound ( , )tF Q θ− exactly equals to the real log likelihood log ( )tP θx . 
In the following section, we will review three representative score space approaches: free 
energy score space (FESS) [8], posterior divergence (PD) [9] and sufficient statistics (SS) 
[13]. 

2.2 Free Energy Score Space (FESS) 

Suppose { }1 , , MH h h=   be a set of M  hidden variables of  the adopted generative model. Let 

xpa   be the parent variables of x , and ( )xP pax  model the relationship between x and xpa . 
Let ipa   be the parent variables of ih  , and ( )i xP h pa model the relationship between ih  and 

ipa . xpa and ipa  can be null. For directed graphical models, we have the following 
expression:  

 
( , ) ( ) ( )

( ) ( )

x i i
i

t t
i i

i

P H θ P pa P h pa

Q H Q h pa

 =



=


∏
∏

x x
 (4) 

Substituting the above factorization into the free energy function ( , )tF Q θ , free energy 
score space (FESS) [8] expands the free energy function according to the summation terms, 
and uses the resulting terms as the score functions. 
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where FESS (1, ,1)Tα =  ; ( )t
if x  is the i-th element of the score function of FESS; the parent 

variable of Mh  is null. The complete score function of FESS can be written as:  

 FESS 1( ) ( ( ), , ( ))t t t T
Mf fF =x x x  (6) 

2.3 Posterior Divergence (PD) 

Suppose tx  be the observed sample at the n-th iteration; 1 1=( , , )N −χ x x be a set of samples not 
containing tx ; { }t

t χ+ = ∪χ x  be the resulting set by adding tx to  χ ; ( )P θx  be the model 
estimated from the set χ  and ( )iQ H  be the approximations of posterior distribution 

( , )iP H θx  where i ∈x χ ; ( )
t

P θ
+

x  be the model estimated from t+χ ; ( )i
tQ H+ be the 

approximations of posterior distribution ( , )i
tP H θ+x  where i

t+∈x χ . The implied log 
likelihood of tx derived in incremental EM algorithm could be written as the contribution of 

tx to the log likelihood for the whole sample set: 
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This log likelihood is different from the previous log likelihood, i.e. lower bound ( , )tF Q θ−  
in variational EM algorithm. Substituting Eq. (3) into Eq. (7), the expansion of the implied log 
likelihood can be obtained. To derive score function, the factorization can be obtained from 
the resulting expansion, as shown in Eq. (4). Substitute Eq. (4) into Eq. (7), the score function 
can be obtained as follows: 
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where xpa   is the parent variables of x , mpa  is the parent variables of hidden variable mh , 
1, ,m M=  . For the input sample tx , the complete score function of PD is: 

 1 1 1( ) ( , ; , , ; ; , , )M M Mh h h h h ht
PD pd fit pd fit ent pd fit entφ φ φ φ φ φ φ φF = x xx   (9) 

2.4 Sufficient Statistics (SS) 

Suppose x  be the observed variable. The joint distribution ( , )P Hx θ  of an adopted generative 
model can be expressed as follows [13]: 

 ( , ) exp{ ( ) ( , ) ( )}TP H α T H A= +x θ θ x θ  (10) 

where ( )α θ is a function vector defined on model parameter θ ; ( , )T Hx  is a vector constructed 
by sufficient statistics functions defined on x and H ; ( )A θ is a scalar function of defined on 
θ . Considering ( , )= ( ) ( )P H P H P Hx x , we have: 

 ( ) exp{ ( ) ( ) ( )}T
h hh

P H α T H A= +θ θ θ  (11) 

where  ( )P H obeys exponential family distribution the same as the generative model. 

For a sample tx , the approximate posterior distribution ( )tQ H  have the same form with 
prior distribution ( )

h
P H θ . That is  

 ( ) exp{ ( ) ( ) ( )}t t T t t
h hQ H α T H A= +θ θ  (12) 

where t
hθ  is the parameter vector depending on the sample tx . Substituting Eq. (10) and Eq. 

(12) into Eq. (2), we have 
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(13)                                                                                                                                      

where ( ( ) , , 1, ( )T T Tη α A= − −θ 1 θ only depends on parameter θ ; ( , )t t tφ Hx  is a function over 
observe variable tx and hidden variable tH :  

 ( , ) ( ( , ) , ( ( ( )) ( )) , ( ),1)t t t t T t t T t T
h hφ H T H diag α T H A=x x θ θ  (14) 

For an input sample tx , the complete score function of SS is: 

 
( )

( ) [ ( , )]t
t t t

SS Q H
E φ HF =x x  (15) 

Although the above three approaches can exploit the information of hidden variables and 
data distribution, they do not exploit the class label, which is demonstrated very informative in 
recognition. To overcome the limitations of previous generative score space methods, we 
propose a new method in the next section.  
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3. Feature Learning From Generative Score Space Extension 

3.1 Model Formulation 

Let the input sample be R D∈x and its label be {1, , }y C∈  . We model the joint distribution of 
x  and y . It is worth noting that the labels of training samples are known and labels for test 
samples are unknown. So we can treat y  as a random variable, which follows the Multinomial 
distribution. We have: 

 ( )

1

( )
C

I y c
c

c

P y α =

=

=∏  (16) 

where  ( )I y c=  is an indication function, which outputs 0 if y c= is false and outputs 1 if 
y c=  is true. cα  is the mixing prior satisfying ( ) [ ( )]c P yα E I y c= = . The distribution over x  and 
H , conditioned on y , is as follows: 

 
( ) ( )

1 1

( , ) ( , ) ( , )
I y c I y cC C

c
c c

P H y P H y c P H θ
= =

= =

= = =∏ ∏x x x   (17) 

where C  is the number of class label. Here, as mentioned in the above section, we assume that 
( , )cP H θx is the joint distribution of a given generative model with hidden variable H  and 

model parameter cθ . 
The joint distribution over x , H  and y is the multiplication of Eq. (16) and Eq. (17): 

 ( )
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1 1

( , , ) ( , ) ( )
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I y c
c c

c c

P H y P H y P y
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As mentioned above, we treat y  as a hidden variable. If y is assigned an exact value, for 
example, 0y y=  for tx , indicates that 0 0( ) 1, ( ) 0t tP y y P y y= = ≠ =x x , 0( ) 1tQ y y= =  and  

0( ) 0tQ y y≠ = . If y is unknown, we can infer its posterior using methods suggested by [20] as 
follows: 

 ( )

1

( ) ( )
C

t t I y c
c

c

Q H Q H =

=

=∏  and ( )

1

( )
C

t I y c
c

c

Q y γ =

=

=∏  (19) 

where we choose the approximate posterior ( )tQ H and ( )tQ y as the same form of ( )P H  
and ( )P y  respectively, and 

( )
E [ ( )]t

t
c Q y
γ I y c= =  is the expectation of class label. The log 

likelihood of the above model can be written as: 
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where ( )T t
c cα F x  can be any expression of FESS in Eq.(5) or the expression of PD in Eq. (8) or 

the expression of SS in Eq. (15) over the c-th class-conditional model; 1( , , , 1)T T T
cα α α= − − − . 

The derived score function is as follows: 

 1 1( ) ( ( ) , , ( ) , KL(Q (y) ( ) ))t t t T t t T t T
c cγ γ P yF = F Fx x x  (21) 

Because KL(Q (y) ( ) )t P y  is less informative, the derived score function can be roughly 
considered as the weighted version of previous score function over C  models. A procedure 
implied in our approach is to infer the label for an input sample tx . This is realized by the 
estimation of the posterior distribution over class label: 

 
( )

( )
( )

t
c ct t

c t
i i

i

α P θ
Q y c γ

α P θ
= = =

∑
x

x
 (22) 

t
cγ   takes a large value when the generative model believes the input tx  is likely to have 

label c  and gives the score function over cθ  a larger weight. Our approach takes both the 
class label information and the model’s guess into account by means of  such weights t

cγ . 
The training procedure of our methods is summarized in Algorithm 1, and the derivation of 

score function is summarized in Algorithm 2.  
 
 

Algorithm 1. Train the joint model 
1: input: training set 1{( , )}t t N

ty =x  of C  classes 

2: initialize 1{ }C
c cθ =  and 1=( , , )T

Cα α α  
3: for 1i =  to C  do 

4:     training model cθ  using the samples of the class c   

5:     c
1

1= ( )
N

t

t
α I y c

N =

=∑   

6:  end for 

7:  output: 1{ }C
c cθ =  and α   
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Algorithm 2. Compute score functions. 

1: input: parameters 1{ }C
c cθ = , α  and dataset 1{ } fNt

t=x   

 2: for 1t =  to fN  do 

 3: 
( )

( ) max ( ( ) ( , ))t
c

t t t
c c cQ H

Q H KL Q H P H θ= x   

 4:   compute score space ( )t t
cF x using FESS, SS, PD 

 5:  
( )

E [ ( )] ( , )t
t t
c c cQ y
γ I y c α P H θ= = = x   

 6: 1 1( ) ( , , ,KL(Q (y) ( ) ))t t T t T t T
c cγ γ P yF = F Fx   

 7: end for 

 

3.2 Computational Complexity Analysis 
The computational complexity of the proposed discriminative extension is essentially similar 
to previous extensions [21]. In comparison with [21], the additional computational cost is (1) 
the estimation of α in the learning procedure (Algorithm 1) which takes only one step and is 
independent of the number of training samples N ; and (2) the estimation of t

cγ  in the test 
procedure (Algorithm 2) which takes one step for each sample and is linearly dependent on the 
number of samples fN  .  

4. Experimental  Results  
In this section, we apply our discriminative extension to three generative score space methods: 
FESS [8], PD [9] and SS [13], and refer to them as FESS-ours, PD-ours and SS-ours 
respectively. We cooperate with three generative models (GMMs [22], PSC [23] and LDA [7]) 
for image recognition. For each experiment, we run it on the randomly formed test and training 
sets for 10–20 rounds, and report the average accuracy. 

4.1 Image recognition using Gaussian mixture model 
In this experiment, we evaluate our method by cooperating with Gaussian mixture models 
(GMMs), which is a standard model for image representation, for image recognition. We 
choose three image datasets, Scene-15 dataset [22], OT dataset [24] and UIUC-sports dataset 
[25]. To further validate the effectiveness of our approach, we also choose a larger dataset, 
Caltech-101[26][27], for the image recognition task. 

Deriving score functions from GMM. Here, we use Gaussian mixture models (GMMs) to 
model the distribution of image features for its effectiveness in image feature modeling and 
image recognition [28]. Suppose R D∈x  be the observed variable (image feature), 

1{ , , }Kz z=z   be a set of hidden variables (indicator) which follows Multinomial distribution 
over K  possible events. The joint distribution of GMMs can be expressed as follows: 
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where ku  and kΣ  are the mean and covariance matrix of the k-th component; 1={ , }K
k k kθ =Σu ; 

( )k kP z α= . The marginal distribution of GMMs is the integration of ( , ; )P θx z  over z , 
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=∏ be the posterior of hidden variables, conditioned on ix . As shown in Eq. 

(3), the free energy function for tx  can be written as  
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Having the lower bound of log ( )tP θx , the elements of FESS score function are the 
summation terms of the lower bound and contain three groups, 
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The score function for posterior divergence (PD) can be written as 
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As shown in Section 3, we apply our proposed discriminative extension to FESS and PD. 
The resulting approaches are referred to as FESS-ours and PD-ours respectively.  

Feature extraction. We use SIFT descriptor for image representation and dense sampling 
on a grid with the step size of 4 pixels. SIFT descriptors are extracted from three scales: 16×
16， 24×24 and 32×32. The k-means algorithm is used to form the codebook with 600 coding 
centers, and linear SVM is employed for classification. It is worth noting that the parameters 
except for the mixture centers K are learned from the joint model. We set 60K =  all throughout the 
experiments. 

Experimental results on the UIUC-Sports dataset. The UIUC-Sports dataset [25] 
contains eight categories and 1792 images totally. The eight categories are rock climbing, 
croquet, badminton, rowing, bocce, polo, sailing and snow boarding. The number of images 
of each category ranges from 137 to 250. Some example images are shown in Fig. 1. As did in 
[29], we randomly select 70 images from each category for training and the rest for test. We 
repeat the experiment for 10 times and report the mean {and standard deviation}. 

 

 
Fig. 1. Sample images from the UIUC dataset. 

The proposed approaches, FESS-ours and PD-ours, will compare with several related 
methods (FESS, PD) and some state-of-the-art methods of image recognition task. ScSPM 
[30] uses sparse coding along with spatial pyramid matching. LScSPM [31] integrates the 
abilities of non-negative sparse coding, low-rank and sparse decomposition to form 
informative and robust representation. The adapted Gaussian mixture model (AGMM) [32] is 
a generic topic-independent Gaussian mixture model (known as the background GMM) is 
learned using all available training data and adapted to the individual topics. CSIFT 
locality-constrained linear coding (CLLC) [25] improves the performance of existing image 
classification algorithms by adding color information. The recognition accuracy of all 
methods on the UIUC-Sports dataset is shown in Table 1. As shown in Table 1, our proposed 
approach shows the best performance among all the compared approaches. Specifically, our 
discriminative extensions (FESS-ours, PD-ours) gain significant improvement over the 
existing generative score spaces (FESS, PD). The reason accounting for this superiority is that 
the proposed approach can exploit class label information, which encodes high-level 
information especially useful in image recognition. In fact, the proposed method benefits from 
the Bayes inference, where the posterior of class label is inferred and used as the components 
of score functions. 
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Table 1. The classification accuracy of our method by cooperating with GMM on the UIUC dataset. 
 

Method Accuracy (%) 
ScSPM[30] 82.74±1.17 
LScSPM[31] 85.31±0.51 
AGMM[32] 
CLLC[25] 

82.50±1.89 
82.98±1.23 

FESS[8] 80.92±1.74 
PD[9] 81.96±0.96 
FESS-ours 85.86±1.57 
PD-ours 86.27±1.08 

 
Experimental Results on Scene-15 Dataset. The Scene-15 dataset [22] is composed of 15 

scene categories. Each category comprises 200-400 images and there are totally 4485 medium 
size images. The scene categories vary from indoor scenes like kitchen and bedroom to 
outdoor scenes such as highway and street. Some example images are shown in Fig. 2. As 
were done in [22][33], we randomly choose 100 images from each category to form the 
training set and the rest serve as the test set. Like previous approaches, we report the mean 
{and standard deviation} after repeating the experiments 10 times. 

 

 
Fig. 2. Sample images from the Scene-15 dataset. 

 
On Scene-15 dataset, our proposed discriminative extensions, denoted as FESS-ours and 

PD-ours, will compare with their initial versions (FESS, PD) closely related with our 
approaches and some state-of-the-art approaches, including bag-of-words (BoW) [34], 
AGMM [32], deep convolutional networks (DCN) [35], deep residual leaning (DRL) [36], and 
deep Fisher networks (DFN) [37]. BoW uses the histograms of visual words as the features of 
images, which is a baseline method without using feature learning. DCN [35] investigates the 
effect of the convolutional network depth on its accuracy in the large-scale image recognition 
setting. DRL [36] presents a residual learning framework to ease the training of networks that 
are substantially deeper than those used previously. DFN [37] proposes a version of the 
state-of-the-art Fisher vector image encoding that can be stacked in multiple layers. 
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Table 2. The classification accuracy of our method by cooperating with GMM on the Scene-15 dataset. 
 

Method Accuracy (%) 
BoW[34] 79.30±1.64 
AGMM[32] 83.20±0.96 
DCN[35] 81.51±1.32 
DRL[36] 80.22±1.21 
FESS[8] 81.04±0.67 
DFN[37] 81.48±1.55 
PD[9] 82.87±1.21 
FESS-ours 
PD-ours 

83.46±1.43 
83.92±1.18  

 
The recognition accuracy of our proposed method and other related methods on the 

Scene-15 dataset are shown in Table 2. As shown in Table 2, we find that, compared with the 
baseline approach BoW, AGMM, DCN, DRL obtain a significant improvement, and AGMM 
achieves the best performance among these three methods. Meanwhile, FESS, DFN and PD, 
which are three approaches most close to our proposed method, obtain competitive results due 
to the consideration of probabilistic modeling of data distribution. Our proposed approach, the 
discriminative extension for PD, achieves the best performance among the compared methods 
mentioned in Table 2, including FESS and PD. The reasons accounting for the improvement 
are: firstly, our method exploits class label which is very informative in image recognition; 
secondly, our method derives the feature mapping which encodes information over observed 
variables, hidden variables and model parameters. 

Experimental Results on OT Dataset. The OT scene dataset [24] is composed of 4 natural 
scenes, coast, forest, open country and mountain, and 4 artificial scenes, highway, inside city, 
street, and tall building. There are 8 categories and 2688 images in total. The size of images is 
about 256×256 pixels. Sample images are presented in Fig. 3. 

 

 
Fig. 3. Sample images from the OT dataset. 
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To further validate the effectiveness of the proposed approach, we then conduct an 
experiment on OT dataset. This dataset shares the same experimental setting as scene-15 
dataset. We compared our proposed approach with FESS [8] and PD [9] closely related to our 
method and other state-of-the-art methods of this task, including BoW[34], DCN [35], DFN 
[37], CLLC [25], and AGMM[32]. Bag of words (BoW) [34] is a baseline method.  

 
Table 3. The classification accuracy of our method by cooperating with GMM on the OT dataset. 

 
Method Accuracy (%) 
BoW[34] 83.80±1.69 
AGMM[32] 84.22±1.56 
DCN [35] 
CLLC[25] 

83.98±1.58 
84.65±1.09 

FESS[8] 88.25±0.295 
DFN[37] 85.05±1.92 
PD[9] 87.98±1.15 
FESS-ours 
PD-ours 

88.81±1.34 
90.01±0.76 

 
The recognition accuracy of all methods on the OT dataset are shown in Table 3. More 

specifically, we can see that AGMM, DCN and LCLA show competitive performance, both 
achieving a significant improvement over the baseline BoW. FESS, DFN and PD, which are 
closely related to our proposed approach, show competitive performance. This is because 
FESS, DFN and PD take probabilistic modeling of data distribution into account. Our 
proposed discriminative extension again outperforms other compared methods. The fact 
indicates that the proposed method exploits class label effectively, which encodes semantic 
information for image classification. Despite benefitting from generative information of image 
distribution when constructing feature mapping, the proposed approach also benefits from the 
Bayesian inference of class label. That is the reason why the approach is superior over other 
compared methods. 

 
Fig. 4. Sample images from the Caltech-101 dataset. 
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Experimental Results on Caltech-101 Dataset. The Caltech-101 database is used 
for larger scale experiments, which contains 9,196 images. These images are classified into 
101 categories, such as chair, barrel, anchor and dolphin, etc. The number of images varies 
along category in Catech-101 database. Sample images are presented in Fig.4. As were done in 
[38][39], we randomly choose 30 images from each category to form the training set and the 
rest serve as the test set. We repeat the experiment for 10 times and report the mean {and 
standard deviation}. 

Our proposed approach will compare with  several related approaches (FESS, PD) and some 
state-of-the-art methods of this task. Bag of features (BOF) [38] presents a method for 
recognizing scene categories based on approximate global geometric correspondence. 
Locally-constrained linear coding (LCLC) [39] proposes a fast approximated 
locality-constrained linear coding method by first performing a K-nearest-neighbor search and 
then solving a constrained least square fitting problem. ScSPM [30] uses sparse coding along 
with spatial pyramid matching. The results of  BOF [38], LCLC [39] and ScSPM [30] on this 
dataset were previously reported in [26][40]. The experimental results are summarized in 
Table 4.  Obviously, our approach (i.e. GMM+PD) again achieves the best performance 
among all the compared methods. The results validate the effectiveness of our approach on 
larger dataset. The reasons accounting for this are twofolds. First, the probabilistic generative 
modeling using GMM can exploit hidden information and is well adaptive to data distribution. 
Second, the performance of PD is proved that it can obtain recognition error rate as low as that 
of plug-in estimation. When we apply the extension to PD, the joint model can fully exploit 
class label information, which is very informative in classification. 

 
Table 4. The classification accuracy of our method by cooperating with GMM on the Caltech-101 

dataset. 
Method Accuracy (%) 
BOF [38] 64.40±0.80 
LCLC[39] 71.67±0.86 
ScSPM[30] 72.20±1.30 
FESS[8] 70.53±0.25 
PD[9] 72.48±1.46 
FESS-ours 
PD-ours 

72.91±1.09 
74.54±1.76 

 

4.2 Image recognition using probabilistic sparse coding  

Probabilistic sparse coding (PSC) [23] assumes that samples are generated from the sparse and 
linear combination of overcomplete basis. For each sample, this approach aims to represent it 
using as fewer basis as possible. Suppose DR∈x  be observed variable;  KR∈z  be hidden 
variable, i.e. the coefficients of linear combination, which follows Laplace distribution. We 
have 

 1( ) exp
2

k k
k

k k

z u
P z

b b
 − 

= −  
 

  (28) 
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where 0, 1k ku b= = . Given z , the conditional distribution  ( )P x z  is Gaussian distribution. 
The joint probabilistic distribution of PSC can be written as: 

 1( , ) ( ; , ) exp( )
2k k k

k k

P N z I z= −∑ ∏x z x w  (29) 

As were done in Section 2, we use the variational inference to derive score functions. The 
free energy function can be written as 

 
,

( , )
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P d z P w z P z
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The score function for posterior divergence (PD) can be written as  
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As shown in Section 3, we apply our proposed discriminative extension to PD. The resulting 
approaches are referred to as PD-ours.  

 Feature extraction. We use SIFT descriptor for image representation and dense sampling 
on a grid with the step size of 4 pixels. SIFT descriptors are extracted from three scales: 16×
16， 24×24 and 32×32. The k-means algorithm is used to form the codebook with 600 coding 
centers. Then each image is represented by a histogram of 600bins. Both support vector 
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machine (SVM) [41] with linear kernel and localized multiple kernel learning (LMKL) [42] 
are chosen as classifiers.  

Experimental results on the Scene-15 dataset. To validate the effectiveness of our 
proposed method PD-ours when cooperating with PSC, we compare them with related score 
space methods (FESS, PD, SS) and some state-of-the-art methods, including AGMM [32], 
DCN[35] and DRL[36]. We still use BoW as the baseline method. The recognition accuracy of 
all methods on the Scene-15 dataset are shown in Table 5. Our proposed discriminative 
extension (i.e. PSC+PD) with different classifiers all achieve excellent performance when 
compared with other score space methods and state-of-the-art methods. Especially, PD-ours 
+LMKL achieves the best performance. The reason accounting for this competitive 
performance is that the proposed method exploits class label information when deriving 
feature mapping. And the proposed method benefits from the Bayes inference when learning 
the feature mapping. 

 
Table 5. The classification accuracy of our method by cooperating with PSC on the Scene-15 dataset. 

Method Classifier         Accuracy 
(%) 

BoW[31] SVM      79.30±1.64 

AGMM[29] SVM      83.20±0.96 

DCN [32]  SVM      81.51±1.32 

DRL[33] SVM      80.22±1.21 

SS[13] SVM      81.97±1.55 

PD[9] SVM      81.29±2.02 

FESS[8] SVM      80.76±1.41 
PD-ours SVM      82.87±1.43 
SS[13] LMKL    82.22±1.64 

PD[9] LMKL    81.95±1.87 

FESS[8] LMKL    82.28±2.14 
PD-ours LMKL    83.17±1.23 

4.3 Image recognition using latent Dirichlet allocation 
Latent Dirichlet allocation (LDA) [43] is proposed based on pLSA [7], which is a generative 
probabilistic model of a corpus. The difference between them is that LDA has hidden variables 
representing scene. The basic idea is that documents are represented as random mixtures over 
latent topics, where every topic is characterized by a distribution over words. Suppose a word  
be the basic unit of discrete data, indexed by {1, , }V ; a document be a sequence of N words 
denoted by 1 2=( , , , )Nw w ww  , where nw  is the n-th word in the sequence; a corpus be a 
collection of M documents denoted by 1 2{ , , , }MD = w w w . LDA assumes the following 
generative process for each w in a corpus D : 

(1) Choose N , which follows Poisson distribution parameterized by ξ ; 
(2) Choose θ , which follows Dirichlet distribution parameterized by α ; 
(3) For each of the N  words nw : 

Choose a topic nz , which follows Multinomial distribution parameterized by θ ; 
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Choose a word nw  from ( , )n nP w z β , which is a multinomial probability conditioned on 

nz . 
Given the parameters α  and β , The joint model of LDA over a topic mixture θ , a set of 

N topics z  and a set of N  words w can be written as: 
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where ( )nP z θ is simply iθ for the unique i  so that 1i
nz = . 

As were done in Section 2, we use the variational inference to derive score functions. The 
score function for SS can be characterized as follows. 

 ( ,( ) [ ( , , )]d
Q θE φ θF = z )w w z  (33) 

where ( ),( ) { , ,1}k k
dn dn dn n kφ vec z w z=w, z,θ . 

As shown in Section 3, we apply our proposed discriminative extension to SS. The resulting 
approaches are referred to as SS-ours. We conducted the experiment on OT dataset. The 
experiments are performed using two popular discriminative classifiers: support vector 
machine (SVM) [41] with linear kernel and localized multiple kernel learning (LMKL) [42]. 
We repeat each experiment for 20 rounds and report the average results, where in each round 
of experiment, we randomly select 30% samples for training and rest for test. The number of 
topic is determined by cross validation. We set the number of topics to be [40, 50]K ∈ . The 
classification results on the OT dataset are summarized in Table 6, where our discriminative 
extension outperform previous methods SS, FESS and PD over both SVM and LMKL.  

 
Table 6. The classification accuracy of our method by cooperating with LDA on the OT dataset. 

Method #topic K Classifier        Accuracy 
(%) 

BOW[31] --- SVM        83.80±1.69 

AGMM[29] --- SVM       84.22±1.56 

DCN [32]  --- SVM       83.98±1.58 

SS[13] 50 SVM       86.79±1.44 

PD[9] 40 SVM       85.94±2.10 

FESS[8] 40 SVM       87.65±1.45 
SS-ours 50 SVM       89.98±1.65 
SS[13] 50 LMKL     87.57±1.84 

PD[9] 40 LMKL     86.43±3.02 

FESS[8] 40 LMKL     87.92±1.99 
SS-ours 50 LMKL     91.35±1.23 
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4.4 Discussion on the experimental results 
We cooperate our discriminative extension with three generative models (GMM, PSC and 
LDA) for image recognition task. As shown in Table 1-Table 6, when comparing with closely 
related methods and state-of-the-art methods, our approach presents convincing results. The 
reasons accounting for this excellent performance can be summarized as follows. First, our 
method exploits class label which is very informative in image recognition; second, we model 
the joint distribution of the observed data and its class label, leading to a quite simple form, 
which can capture high-level relations within and across the class and visual modalities; third, 
the derived feature from generative model is essentially a function over hidden variable, model 
parameters, and observed data, which encodes high-level information important for image 
recognition. The computation cost of the proposed approach in real application includes three 
parts: (1) training the joint model; (2) applying the learned model for recognition; (3) the 
estimation of  α in the learning procedure and t

cγ in the test procedure. The first part is 
relatively time consuming because of the iteration of the EM algorithm. The second part is 
computationally effective since it only requires an E-step. The estimation in the third part only 
takes one step, and is independent of the number of training samples. Therefore, our 
discriminative extension can scale to large scale applications. Moreover, the performance of 
our approach can be potentially improved via exploiting spatial information. This idea will be 
left to future work.  

5. Conclusion 
In this paper, we propose a data-distribution-aware feature learning approach for 
content-based image recognition. The approach is based on exploiting class label from 
generative score space, in which image feature is derived from the probabilistic distribution of 
image datasets. The derived feature allows to fully exploit class label information and hidden 
information. Also, the derived score function is well adapt to data distribution. We cooperate 
our method with three generative models for image recognition task. The convincing 
experimental results demonstrate the effectiveness of our proposed extend generative feature 
learning approach. Our approach can be used under many practical conditions, such as image 
retrieval and sequence recognition. However, it still needs further evaluation to scale the 
method to other vision problems. Our method can further benefit from the mining of larger 
dataset. 
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