

Few-Shot Image Synthesis using Noise-Based Deep

Conditional Generative Adversarial Nets

Finlyson Mwadambo Msiska*, Ammar Ul Hassan*, Jaeyoung Choi**, Jaewon Yoo***

Abstract
In recent years research on automatic font generation with machine learning mainly focus on using

transformation-based methods, in comparison, generative model-based methods of font generation have

received less attention. Transformation-based methods learn a mapping of the transformations from an

existing input to a target. This makes them ambiguous because in some cases a single input reference may

correspond to multiple possible outputs. In this work, we focus on font generation using the generative

model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel

way to train a conditional generative deep neural model so that we can achieve font style control on the

generated font images. Our research demonstrates how to generate new font images conditioned on both

character class labels and character style labels when using the generative model-based methods. We

achieve this by introducing a modified generator network which is given inputs noise, character class, and

style, which help us to calculate losses separately for the character class labels and character style labels.

We show that adding the character style vector on top of the character class vector separately gives the

model rich information about the font and enables us to explicitly specify not only the character class but also

the character style that we want the model to generate.

 Keywords : font| font styles| computer vision| image generation| generative adversarial networks

I. INTRODUCTION

Automated font generation with machine learning

is a lucrative research field in the font design world

recently. This is mostly because font design is a

resource-consuming task and designers can spend

considerable time creating new fonts. Modern font

generation solutions use machine learning because

of their end-to-end nature with less human

involvement which saves a lot of time and reduces

labor needed to design new fonts.

 This ranges from designing regular, handwritten,

or artistic styled fonts using architecture-variant

models which can help generate quality fonts with

these distinctive features. Earlier work in font

generation introduced the use of generative

adversarial networks (GAN) [1]. GANs are a

popular machine learning framework used for data

generation tasks.

Generally, machine learning font generation can be

loosely categorized into two methods, those

requiring an existing image as reference called

transformation methods and those that just need

random noise vectors and label vectors information

called just generative methods. This research work

studies the generative methods and proposes a

model that generates fonts guided with the font

character label and style label vectors. Since fonts in

deep learning are represented as images in which the

collective pixels in the image graphically signify a

particular character and its font style.

In this paper, we introduce a combination of three

vectors, a noise vector, a character embedding

*This work was partially supported by Institute of Information & communications Technology Planning and Evaluation

(IITP) grant funded by the Korea government (MSIT) (No. 2016-0-00166, and partially supported by the Soongsil

University Research Fund of 2019.

* Student Member, School of Computer Science and Engineering, Soongsil University, Graduate Student
** Member, School of Computer Science and Engineering, Soongsil University, Professor
***Member, Department of Small Business and Entrepreneurship, Soongsil University, Associate Professor

Manuscript : 2020. 10. 12

Revised : 2021. 01. 24

Confirmation of Publication: 2021. 02. 02

Corresponding Author : Jaeyoung Choi,

e-mail : choi@ssu.ac.kr

Smart Media Journal / Vol.10, No.1 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2021.10.1.79

2021년 03월 스마트미디어저널 79

vector, and a style embedding vector to train a deep

generative model to create new font images. The

noise vector is used to predict and generate the

image pixels that the character and style embedding

specify.

II. RELATED WORKS

Font generation using GANs [1] has been an

interesting area of research of late. This is because

GANs are robust and have helped in solving

challenges like image generation, text-to-image

translation [2], and image-to-image translation [3].

This is because GANs have two networks, the

generator and the discriminator which train

simultaneously through an adversarial process. The

training involves estimating new samples and also

determining that samples are real or generated

samples via this adversarial process in which both

objectives are being pitted against each other.

Generative adversarial networks revolutionized

unsupervised learning in various domains of machine

learning. Regardless of their success, GANs are

difficult to train because of the instability during

training which is an ongoing challenge in computer

vision in order to generate diverse and high-quality

images. Nevertheless, there are some fair proposed

guidelines for stable training of GANs [4].

1. Transformation-based methods

Various images are distinctive visually but share

key structural characteristic similarities which can

be used to group images together into visual domains

which are basically the categories the images fall in.

Apart from this, images in these domains can also be

grouped according to their specific unique imprint

which is basically called style. StarGAN [5,6] is a

recent transformation-based method using image-

to-image translation to provide a solution that

transforms images considering the diverse styles in

each domain in turn providing the diversity of

generated images and providing the scalability over

multiple domains.

Font generation methods using these

transformation-based methods mostly use image-

to-image translation in which they transform an

existing font image from one domain to another.

Transformation-based image generation is also a

style transfer problem [7] that aims to create a new

image by combining the content of one image with

the style of another. Style transfer has been widely

applied to many modern image processing problems

to achieve great performance in image

transformation and previously style transfer was

recently used to generate fonts in neural font style

transfer [8].

In transformation-based font generation, we can

learn the process of transformation from the source

font style to the target font style given pairs of

source and target inputs [9]. This approach is

basically approximating between font styles how we

can take the style of one font character and transfer

it to another font character. This is limited because

it involves the generation of one font style at a time

and can fail when there’s a large number of different

fonts involved. This problem can be solved by

image-to-image translation techniques introduced

in Pix2Pix [3], which learns the mapping from the

input image to the output image. The Pix2Pix model

had a one-to-many relationship problem that could

cause a character to appear in multiple fonts. Zi2Zi

[10] adopted the Pix2Pix architecture and added

category embedding to improve the architecture and

learn multiple font styles at the same time. Zi2Zi

solved this problem through category embedding by

concatenating a non-trainable Gaussian noise to the

character embedding as the style embedding before

it goes into the decoder. The decoder in Zi2Zi takes

both the character and style embeddings as it goes

through the process of upsampling to generate the

target image.

Image style transfer is also evidently used in

DCFont [11] as one part of the two major

components in a system which given only a few

characters can automatically generate an entire font

library with realistic-looking synthetic results. In

DCFont, the proposed model is given a small number

of characters as input and the font feature

reconstruction network estimates the deep font

features of the remaining characters from the deep

feature space. The result of the font feature

reconstruction network is the estimated style

representation of the target character and this is fed

to the font style transfer network. The font style

transfer network converts characters in the

reference font to the corresponding output style by

using the style vector from the font feature

reconstruction as style. This approach fails when the

source font image has a very different shape

Smart Media Journal / Vol.10, No.1 / ISSN:2287-132280 2021년 03월 스마트미디어저널

compared to the target font image and makes it

harder to accomplish image to image translation.

According to SCFont [12], these recent end-to-

end approaches like transformation-based deep-

learning methods often obtain synthesis results

without correct structures and artifacts because

they lose some information in between. This is the

main reason we elected to use generative methods

which learn the buildup knowledge of the structure

of the characters from the ground truth.

2. Generative model-based methods

Generative model-based approaches are useful in

such cases because they are trained to learn the

buildup of all the characters under different fonts and

learn the process of how to reproduce these

designed characters and generate new fonts from

this learned knowledge. Generative model-based

methods emulate the vanilla GANs approach and

generate new fonts from only random noise by

capturing the data distribution and learning how to

model the high dimension distribution of the font data.

In recent font generation literature, previous

research has demonstrated that font generation can

also be accomplished using generative model-based

methods. These methods are different from the

transformation-based methods because they

generate new characters from only noise and

conditioned data.

Recently GlyphGAN [13] proposed a new

architecture which is a generative model-based

approach to font generation. These generative

model-based methods train the model to learn each

font character’s design principle using generative

adversarial learning and come up with new

characters by sampling data from the estimated

manifold that the fonts compose in the learned image

space. In the GlyphGAN architecture, the generator

is given an input vector that consists of the style

vector and character class vector. The character

class vector is a one-hot encoded vector based on

the classes of characters of the training data and the

style vector is a uniform random vector with

arbitrary information. The discriminator used the

Wasserstein distance [14] to find the distance

between its inputs which consist of the training

examples and the generated samples. The goal in

GlyphGAN was to generate an infinite variety of

fonts with control on the character and style

independently.

Although GlyphGAN succeeds in explicitly

controlling the class of the generated font character,

GlyphGAN fails to explicitly control the style of the

generated font characters. In GlyphGAN explicit

style control is not performed because they used a

uniform random vector as the style which is not

supervised information. In this paper, we approach

the font generation problem similar to GlyphGAN, a

generative model-based method, and solve their

proposed model’s problem by proposing a model that

can explicitly control the style of the generated fonts.

III. PROPOSED METHOD

In GAN the generator part of the model computes

this function G(z) with z being the input noise

variable, the discriminator computes the function

D(x) with the input x, the real image training

examples. The discriminator also computes the

function D(G(z)) having the generator output G(z)

as input. The goal of the discriminator network D is

to predict a single scalar which determines whether

the input image is real or fake by maximizing the

probability of correctly classifying which images are

real and which ones are fake, the generator network

G meanwhile tries to succeed in minimizing its failure

to fool the discriminator. This pioneering GAN

framework has no control over the modes of data

being generated.

This problem is solved by conditional GANs

(cGANs) [15] which condition the model by

introducing an additional input vector y to the GAN

model on both networks G and D with y serving as

the character class label for the training images

examples and also for the fake examples. In cGANs

the input to the generator is z and y, the generator

computes the function G(z, y) and the inputs to the

discriminator are x, y, and G(z, y), the discriminator

computes the functions D(x, y) for real examples

and D(G(z, y),y) for generated examples.

In order to improve the performance of GANs

more, deep convolutional GAN (DCGAN) [16]

scaled up GANs further by successfully introducing

Smart Media Journal / Vol.10, No.1 / ISSN:2287-1322 2021년 03월 스마트미디어저널 81

Fig. 1. The architecture of the proposed model.

the use of CNN [17-19] in GAN which makes it

possible to train the discriminative and generative

networks with deep convolutional layers and our

model utilizes both.

Our approach solves the explicit style control

problem introduced in GlyphGAN by providing our

model with a separate style vector which is

additional supervised information. We achieve this

by specifying the generator’s input vector into

three parts, the noise vector z, character label vector

y, and style label vector s.

This type of conditioned input helps us calculate

character class label and style label losses

separately and distinctly learn each of these

conditions. This bolsters our model’s precision

capability to intentionally specify the style of our

generated font samples after training. Our model is

reliably capable to perform explicit style control

when generating samples from only noise.

We use cGAN loss with y and s as our conditions

for characters and style classification loss,

respectively,

𝐿௖ீ஺ே(𝐺, 𝐷) = 𝔼௫,௬,௦[𝑙𝑜𝑔𝐷(𝑥, 𝑦, 𝑠)]

+ 𝔼௭,௬,௦ ቂlog ቀ1 − 𝐷൫𝐺(𝑧, 𝑦, 𝑠)൯ቁቃ.

To further improve the performance of the model

we also add L1 loss to the generator so that the

generated samples gravitate towards clearer output,

𝐿௅ଵ(ீ) = 𝔼௫,௭,௬,௦[∥ 𝑥 − 𝐺(𝑧, 𝑦, 𝑠) ∥ଵ].

Finally, our final objective is a combination of these

two functions,

𝐺∗ = arg min
ீ

max
஽

 𝐿௖ீ஺ே (𝐺, 𝐷) +⋌ 𝐿௅ଵ(𝐺).

In our network architecture, as shown in Fig. 1, the

generator gets an input of 3 vectors, the noise vector,

character class vector, and character style vector.

The noise vector is a 100-dimensional vector that

is sampled from a normal distribution. The character

class and character style vectors are one-hot

encoded vectors according to the number of

characters and styles, respectively i.e., the character

vector is a 26-dimensional vector (26 alphabet

letters) and the style vector is a 204-dimensional

vector (200 training styles and 4 finetuning styles).

The discriminator gets two inputs, one input is the

generated fake images from the generator, the other

input is the real data which are the fonts images in

the dataset. Both of these inputs are already

concatenated with the one-hot encoded character

class and character style vectors before being fed

into the discriminator. We use batch normalization in

both discriminator and generator networks [20]. In

the generator network, each de-convolutional layer

is followed by a ReLU activation function and its final

layer has a sigmoid. On the other hand, each of the

discriminator network’s convolutional layer is

followed by a leaky ReLU activation function and

after the series of convolutions, we have a sigmoid

activation function. The ReLU and the leaky ReLU

activation functions achieve good performance in the

generator and the discriminator, respectively, and

this addresses the vanishing gradient problems

assuring stable training of the deep neural network

[4, 15]. We also introduce two new dense layers

after the flattened layer in the discriminator, one

used for character classification and the other for

style classification. This allows us to calculate losses

separately for the character class labels and

character style labels and with this, we can perform

explicit style control for the generated characters.

IV. Experiments

We created our own alphabet dataset based on

tools shared by IBM [21] which involves collecting a

Smart Media Journal / Vol.10, No.1 / ISSN:2287-132282 2021년 03월 스마트미디어저널

Fig. 2. Example of the diverse training samples from the dataset

large enough number of font files online and

generating numerous images from A-Z in each

respective font file. Our generated dataset consists of

200 different fonts used during training and another 4

different fonts used for finetuning in the selected

finetuning characters, a total of 204 font files. Each

style has its label e.g., ‘Style 1’ is labeled as a

value ‘1’ and represented by the one-hot vector

for this value. This applies to all the font styles up to

the 204th style and can be expanded with regard to the

length of the dataset depending on the number of

font files that make up the dataset used for the model.

We used TensorFlow to implement our model and

trained it on an NVIDIA 2080ti GPU using Adam

optimizer with a learning rate set to 0.0002 while using

batch size as 64 with the input and output character

images used are all of size 64 x 64 x 1. In our

experiments, we do three tests to evaluate our

model’s performance. We test how effective the

model is on controlling font style, generating new font

style, and few-shot font generation.

At test time we generate samples after training the

model. We feed the trained model a noise vector,

character label, and style label in order to generate

specified characters from A-Z in the provided style

showing explicit style control. Fig. 3. shows the results

of controlling style with a supervised style vector and

selecting varying specified styles we want the model

to generate.

In order to test our model’s robustness, we

introduce the model to an incomplete set of

characters in a new font style. The aim is to retrain

and finetune the model on these new characters. To

do this we conducted 2 finetuning tests with

variations in the number of characters used to

finetune. We selected disjointedly 20 and 5

finetuning characters to use in separate tests. We

used the structural similarity index measure (SSIM)

to shortlist the finetuning characters used [22].

Fig. 3. Characters A-Z in different font styles

generated from noise with style and character

labels after training.

Smart Media Journal / Vol.10, No.1 / ISSN:2287-1322 2021년 03월 스마트미디어저널 83

1.

2.

3.

4.

(a) SSIM selected 20 finetuning characters

1.

2.

3.

4.

(b) SSIM selected 5 finetuning characters

Fig. 4. Characters are used to finetune the trained model.

1.

2.

3.

4.

Fig. 5. Generated results from 20 characters used

in finetuning.

1.

2.

3.

4.

Fig. 6. Generated results from 5 characters used

in finetuning.

Smart Media Journal / Vol.10, No.1 / ISSN:2287-132284 2021년 03월 스마트미디어저널

SSIM is a simple image classifier that can tell how

similar two images are by focusing on the structural

comparison based on the image’s pixel density

values similarity. This measure is not based on exact

differences between pixels and it enables us to find

the images that are representative of the whole

dataset. Fig. 4. shows the selected characters which

are used for finetuning. These characters have the

highest SSIM score compared to each of the other

representative of the entire 26 characters of the

English alphabet.

This section explains the few-shot font generation.

Since we finetune on only a few characters, we want

to find out how the other unseen characters look like

in the finetuning styles. Fig. 5 and Fig. 6 show the

test results of the seen and unseen characters after

finetuning the trained model. These characters are

in the font styles used for finetuning to test if our

model can learn some extra new font styles. Ideally,

we want the font designer to design only a few font

characters from the alphabet and the rest complete

set should be generated by the model.

V. Discussion

These results show that our model learns to generate

all characters from noise in respective font styles

during training while being able to learn both the

character labels and style labels simultaneously.

Fig. 7 below shows the graphical representations

of the character classification loss, y, and style

classification loss, s that is optimized during training

classification loss during training.

As the number of the training steps progresses the

character classification loss discriminator_loss_

real_y significantly decreases from 0.4 to

somewhere near 0 and as the number of the training

steps progresses the style classification loss

discriminator_loss_real_s significantly decreases

from 5 to somewhere near 0.

The results also show that thin fonts as

demonstrated in Fig. 6. become blurry when using

fewer finetuning characters while bold and thick fonts

generate promising and close to the best results. The

few-shot font generation results in this work look

promising and substantiate the need to explore this

research area while also showing potential for better

and improved results for future works.

Fig. 7. Character classification loss and style

VI. Conclusion

In this paper, the objective was to create a font

generation model using only the noise, character, and

style vectors that can also perform a few-shot font

generation. This generative model-based approach

attempted to solve the problem that exists in

transformation-based methods in where a single

input reference can be mapped to multiple possible

outputs. This model accomplishes this by learning

the buildup of the characters from noise-to-image

while providing explicit font style control of the

generated fonts by intentionally specifying both the

character and style in our generated samples. This

contribution helps the generative-model to learn

these specific additional informative attributes of the

fonts that we generate which significantly impacts

the loss functions in our model.

In our future work, we will explore a new way to

improve the results of this approach with an

emphasis on the few-shot font generation process

and also diversifying the dataset to work with

Chinese, Japanese, and Korean (CJK) character

datasets.

Smart Media Journal / Vol.10, No.1 / ISSN:2287-1322 2021년 03월 스마트미디어저널 85

REFERENCES

[1] I. J. Goodfellow, J. Pouget-Abadie,

M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. C. Courville, and Y. Bengio,

“Generative adversarial networks,” NIPS,

Proc. of Neural Information Processing
Systems, pp. 2672-2680, 2014

[2] S. Reed, Z. Akata, X. Yan, L.

Logeswaran, B. Schiele, and H. Lee,

“Generative adversarial text to image

synthesis,” arXiv preprint 1605.05396,

2016

[3] P. Isola, J.-Y. Zhu, T. Zhou, and A.

A. Efros, “Image-to-Image translation

with conditional adversarial networks,”
CVPR, Proc. of the IEEE Conference on
Computer Vision and Pattern
Recognition, 2017

[4] J. Brownlee, “Tips for Training

Stable Generative Adversarial Networks,

https://machinelearningmastery.com/ho

w-to-train-stable-generative-advers

arial-networks/(accessed July 24, 2020)

[5] Y. Choi, M. Choi, M. Kim, J.-W. Ha,

S. Kim, and J. Choo, “StarGAN: Unified

generative adversarial networks for

multi-domain image-to-image

translation,” CVPR, Proc. of the IEEE

Conference on Computer Vision and
Pattern Recognition, 2018

[6] Y. Choi, Y. Uh, J. Yoo, and J.-W.

Ha, “StarGAN v2: Diverse image

synthesis for multiple domains,” arXiv

preprint arXiv:1912.01865, 2019

[7] L. A. Gatys, A. S. Ecker, and M.

Bethge, “Image style transfer using

convolutional neural networks,” CVPR,

Proc. of the IEEE Conference on
Computer Vision and Pattern
Recognition, pp. 2414-2423, 2016

[8] G. Atarsaikhan, B. K. Iwana, A.

Narusawa, K. Yanai, and S. Uchida,

“Neural font style transfer,” ICDAR, Proc.

of 14th International Conference on
Document Analysis and Recognition, pp.

51-56, 2017

[9] Y. Tian, “Rewrite: Neural style

transfer for Chinese fonts,” https://git

hub.com/kaonashityc/Rewrite(accessed

April 25, 2020)

[10] Y. Tian, “Zi2Zi: Master Chinese

calligraphy with conditional adversarial

networks,” https://github.com/kaonash

i-tyc/zi2zi (accessed April 25, 2020)

[11] Y. Jiang, Z. Lian, and Y. Tang, and

J. Xiao, “DCFont: An end-to-end deep

Chinese font generation system,”

SIGGRAPH Asia, Proc. of SIGGRAPH
Asia Technical Briefs, 2017

[12] Y. Jiang, Z. Lian, Y. Tang, and J.

Xiao, “SCFont: Structure-guided

Chinese font generation via deep stacked

networks,” AAAI, Proc. of 33rd AAAI
Conference on Artificial Intelligence,

2019

[13] H. Hayashi, K. Abe, and S. Uchida,

“GlyphGAN: Style-consistent font

generation based on generative

adversarial networks,” arXiv preprint
arXiv:1905.12502, 2019

[14] M. Arjovsky, S. Chintala, and L.

Bottou, “Wasserstein generative

adversarial networks,” Machine
Learning, Proc. of 34th International
Conference on Machine Learning, pp.

214-223, 2017

[15] A. Radford, L. Metz, and S.

Chintala, “Unsupervised representation

learning with deep convolutional

generative adversarial networks,” arXiv

preprint arXiv:1511.06434, 2015

[16] M. Mirza, and S. Osindero,

“Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014

[17] A. Krizhevsky, I. Sutskever, and G.

E. Hinton, “ImageNet classification with

deep convolutional neural networks,”
NIPS, Proc. of Neural Information
Processing Systems, pp. 1097-1105,

2012

[18] S. Noh, “Classification of Clothing

Using Googlenet Deep Learning and IoT

based on Artificial Intelligence,” Smart

Media Journal, vol.9, no.3, pp. 41-45,

2020

Smart Media Journal / Vol.10, No.1 / ISSN:2287-132286 2021년 03월 스마트미디어저널

[19] Y. Kim, and J. Kim, “A Study on the

Performance of Enhanced Deep Fully

Convolutional Neural Network Algorithm

for Image Object Segmentation in

Autonomous Driving Environment,”
Smart Media Journal, vol.9, no.4, pp. 9-

16, 2020

[20] S. Ioffe and C. Szegedy, “Batch

Normalization: Accelerating deep

network training by reducing internal

covariate shift,” ICML, Proc. of

International Conference on Machine
Learning, 2015

[21] IBM; “Handwritten Korean

Character Recognition with TensorFlow

and Android,” https://github.com/IBM/

tensorflow-hangul-recognition (access

ed July 27, 2020)

[22] J. Nilsson, T. Akenine-Moller,

“Understanding SSIM,” arXiv preprint

arXiv:2006.13846, 20

Authors

Finlyson Mwadambo Msiska

He received his B.S. degree

in Information and Com

munications Technology

from Daeyang University,

Malawi in 2018. Currently,

he is a graduate student at Soongsil University.

His research interests include Font Systems,

Deep Learning, and System Software.

Ammar Ul Hassan

He received his B.S. degree

in Department of Software

engineering, from Inter

national Islamic University

Islamabad, Pakistan in

2013. He then received his M.S. degree in

School of Computer Science and Engineering

from Soongsil University, Seoul, South Korea

in 2018. He is currently taking his Ph.D. degree

in Department of computer science from

Soongsil University Seoul, South Korea. His

current research interests are Deep learning,

Computer vision, Generative models, making

font environment for new fonts in Linux

Operating System.

Jaeyoung Choi

He received his B.S. degree

in Control and Instrumenta-

tional Engineering from

Seoul National University,

Seoul, Korea, in 1984, the

M.S. degree in Electrical Engineering,

University of Southern California in 1986, and

the Ph.D. degree in Electrical Engineering from

Cornell University in 1991. He is currently a

professor of School of Computer Science and

Engineering at Soongsil University, Seoul,

Korea. His current research interests include

Korean Typography, Distributed Computing,

and HPC.

Jaewon Yoo

He received his B.S. degree

in Business Administration

from Hankuk University of

Foreign Studies, Seoul,

Korea, in 1996, the M.S.

degree in Marketing,

Hanyang University in 2000, and the Ph.D.

degree in Marketing from Oklahoma State

University in 2011. He is currently an

associate professor of the department of Small

Business and Entrepreneurship at Soongsil

University, Seoul, Korea. His research and

teaching interests focus on service marketing

strategies, salesforce management, marketing

research, customer orientation, and retailing.

Smart Media Journal / Vol.10, No.1 / ISSN:2287-1322 2021년 03월 스마트미디어저널 87

