• Title/Summary/Keyword: Generation of domestic sewage

Search Result 8, Processing Time 0.022 seconds

A study on the prediction of the generation of domestic sewage by improvement of water demand estimation (생활용수 수요추정방법 개선에 의한 하수발생량 예측에 관한 연구)

  • 김재윤
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1275-1279
    • /
    • 2002
  • This study was performed to improve water demand estimation and analize correlation between generation of domestic sewage and domestic water use. To improve the prediction of water demand estimation, new water demand equation was developed. The results is as follows. $InQ_t = {\beta}_0+{\beta}_1InP_t+{\beta}_2InY_t+{\beta}_3InH_t+{varepsilon}_t$By using the statistical analysis of the "generation of domestic sewage" and "domestic water use", the regression equation between them is formed. The result is as follows. Generation of domestic sewage : 0.8487 $\times$ Domestic water use + 684.57 ($R^2$= 0.972)>$R^2$= 0.972)

Study on Energy Independence Plan for Sewage Treatment Plant (하수처리시설의 에너지 자립화 방안 연구)

  • Kim, Young-Jun;Chung, Chul-Kwon;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.15-20
    • /
    • 2008
  • The objectives of this study are to analyze the energy independence plan and to propose a suitable sewage treatment plant in Korea. The total amount of electricity consumption for public sewage treatment plant was estimated as 1,182 GWh in 2007. It was estimated that total 16 sewage treatment plants with renewable energy systems produced electricity of 15.2 GWh per year, which could replaced 0.8% of total electricity used for sewage treatment. It was found that domestic sewage treatment plants with power generation plants by digestion gas were installed in 7 places and produced electricity of 13 GWh per year. It was also found that the power generation plants by digestion gas were the most cost-effective for sewage treatment out of the renewable energy systems based on the benefit-cost analysis.

  • PDF

Study on Energy Independence Plan for Sewage Treatment Plant (하수처리시설의 에너지 자립화 방안 연구)

  • Kim, Young-Jun;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • The objectives of this study are to analyze the energy independence plan and to propose a suitable sewage treatment plant in Korea. The total amount of electricity consumption for public sewage treatment plant was estimated as 1,812 GWh in 2007. It was estimated that total 16 sewage treatment plants with renewable energy systems produced electricity of 15 GWh per year, which could replace 0.8% of total electricity used for sewage treatment. It was found that domestic sewage treatment plants with power generation plants by digestion gas were installed in 7 places and produced electricity of 13 GWh per year. It was also found that the power generation plants by digestion gas were the most cost-effective for sewage treatment plant out of the renewable energy systems based on the benefit-cost analysis.

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh;Kamsonlian, Suantak;Pal, Shubham
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.532-537
    • /
    • 2022
  • The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.

Physicochemical Characteristics and Estimation of H2S Emission Rate from Municipal Solid Waste at the Environmental Facilities in Busan City (부산지역 환경기초시설에서 발생하는 폐기물의 물리, 화학적 특성 규명 및 황화수소 발생량 예측에 관한 연구)

  • Lee, Taeyoon;Kim, Doyong;Kim, Jaejin;Lee, Junki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • There have been increasing interests in the odor generation problems as concerns about the quality of life has been increased recently. Especially, approximately 67% of the odor complaints from environmental facilities are those from sewage treatment facilities and food waste treatment facilities. Moreover, sewage ocean dumping will be prohibited from 2012 by the international and domestic ocean laws, and thus, demand for alternative management plans is increasing. Therefore, it was first selected 5 sewage treatment facilities and 5 food waste treatment facilities where the amounts of waste are relatively immense in Busan, and collect their sludge samples. Then it was investigated the samples' physical and chemical characteristics through proximate analysis, elemental analysis, XRF analysis, and calorific value analysis. Finally, estimate the $H_2S$ emission rates were estimated in order to apply the results as the basic data for providing the fundamental solution for the oder complaints. As a result, the concentration of $H_2S$ in sewage sludge and in food waste treatment facility were 57.3 mg/kg and 19.7 mg/kg in average, respectively. Finally, the units of $H_2S$ in wastes stored in total 10 waste treatment facilities was estimated 16,017,910.0 mg/d.

  • PDF

A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem (미세플라스틱의 환경노출을 최소화하기 위한 하·폐수 슬러지 관리방안)

  • An, Junyeong;Lee, Byung Kwon;Jeon, Byong-Hun;Ji, Min-Kyu
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Due to the negative impacts of microplastics (MPs) on the ecosystem, the investigation of its occurrence and its treatment from sewage and wastewater treatment plants (WWTPs) have received a lot of attention in the recent years. Most MPs are precipitated and removed with the sludge during the treatment process. Proper sludge management is immensely necessary to avoid MP exposure in the environment. However, the domestic research on this aspect is limited. This study reviews appropriate sludge management approaches to decrease environmental MP exposure. This can be achieved through investigating sludge generation and treatment, regulation laws and government policy trends with an emphasis on WWTPs. The ratio of sludge in sewage treatment plants has been observed to be highest in recycling followed by incineration and landfills. Recycling is the highest in fuel followed by construction materials and composting. For WWTPs, the highest ratio is in recycling followed by fuel and landfills, and recycling is confirmed in the following order: incineration > after composting > after solidification > earthworm breeding. Treatment approaches that can increase the exposure of MPs to the ecosystem are considered to be used in landfills and agricultural fields. However, this method is not appropriate given the insufficient capacity of domestic landfills and the sufficient supply of existing chemical and animal manure fertilizers. Instead, it would be rational in terms of environmental preservation to expand the use of fuel and energy in connection with the new and renewable energy policy, and to actively seek the use of sub-materials for construction materials. In order to secure the basic data for the effectiveness of future planning and revision of related laws, it is required to perform an in-depth investigation of the sludge supply and demand status along with the environmental and economic effects.