• Title/Summary/Keyword: Generation Sector

Search Result 289, Processing Time 0.028 seconds

Current status, challenges and prospects for dairy goat production in the Americas

  • Lu, Christopher D.;Miller, Beth A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1244-1255
    • /
    • 2019
  • Dairy goat production continues to be a socially, economically and culturally important part of the livestock industry in North, Central and South America and the Caribbean islands. Goat milk, cheese and other dairy products offer consumers food products with nutritional, health and environmental benefits. In North America, Mexico produces the greatest volume of goat milk, but most is for family or local consumption that is typical of a mixed farming system adopted by subsistence farmers in dry areas. The United States is not yet a large global goat milk producer, but the sector has expanded rapidly, with dairy goat numbers doubling between 1997 and 2012. The number of dairy goats has also increased dramatically in Canada. Commercial farms are increasingly important, driven by rising demand for good quality and locally sourced goat cheese. In South America, Brazil has the most developed dairy goat industry that includes government assistance to small-scale producers and low-income households. As of 2017, FAO identified Haiti, Peru, Jamaica, and Bolivia as having important goat milk production in the Western Hemisphere. For subsistence goat producers in the Americas on marginal land without prior history of chemical usage, organic dairy goat production can be a viable alternative for income generation, with sufficient transportation, sanitation and marketing initiatives. Production efficiency, greenhouse gas emission, waste disposal, and animal welfare are important challenges for dairy goat producers in the Americas.

Solar radiation forecasting by time series models (시계열 모형을 활용한 일사량 예측 연구)

  • Suh, Yu Min;Son, Heung-goo;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.785-799
    • /
    • 2018
  • With the development of renewable energy sector, the importance of solar energy is continuously increasing. Solar radiation forecasting is essential to accurately solar power generation forecasting. In this paper, we used time series models (ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH). We compared the performance of the models using mean absolute error and root mean square error. According to the performance of the models without exogenous variables, the Seasonal ARIMA-GARCH model showed better performance model considering the problem of heteroscedasticity. However, when the exogenous variables were considered, the ARIMAX model showed the best forecasting accuracy.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

The Influence of Risk Perception on Destination Attachment and Voluntourism Behavior: Empirical Evidence from Indonesia

  • PANGARIBUAN, Christian Haposan;MANURUNG, Adler Haymans;SAROSO, Hardijanto;RUSMANTO, Toto
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.1287-1293
    • /
    • 2021
  • Alternative forms of travel have recently been delivering rewarding experiences and promising sustainable development for the tourism sector. However, it also depends on the uncertainties, consequences, and emotional connection with the destination. So far, the scholars have done limited empirical studies on volunteer tourism in Bali. Thus, this study tries to measure volunteer tourists' behavior by understanding the relationship between destination attachment, risk perception, and voluntourism behavior. Therefore, a study on the inclusivity of tourists' attachment to a particular place and perceived risks in volunteer tourism is an essential need to sustain the tourism industry. Data was analyzed using Partial Least Squares with smartPLS software. This study is based on a sample of ninety-three tourists of generation Z in Bali, Indonesia. Both outer model and inner model evaluation were conducted to ensure the robustness of the proposed model. The findings showed that destination attachment does have a direct and significant effect on voluntourism behavior. As expected, we also find that perceived risk has a significant moderating role on the relationship. Hence, greater efforts are needed to improve the image of the place by highlighting the characteristics of the locations. At the same time, it is necessary to put considerable effort to alleviate unfavorable conditions by creating safe environment surrounding the destination.

A Study on the Characteristics of Pollutants in CFBC Boiler with Ammonium Sulfate Injection (황산암모늄 주입시 CFBC 보일러의 오염물질 특성 연구)

  • Lee, Chang-Yeol;Jeong, Bok-Hoa;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.754-761
    • /
    • 2018
  • There is growing concern over the effects of global warning. In response, the power generation sector must consider a wider range of systems and fuels to generate power. One of the classes of solid fuels that is being increasingly developed is biomass. However, one of the most serious problems that biomass plants face is severe corrosion. To mitigate the problem, various approaches have been proposed in terms of additive utilization. This study is based on the results obtained during the co-combustion of wood chip and waste wood in a circulating fluidized bed boiler (CFBC boiler). The KCl concentration was reduced from 59.9 ppm to 3.9 ppm during the injection of ammonium sulfate, and NOx was reduced by 25.5 ppm from 30.6 ppm to 5.1 ppm. However, SOx increased by 110.2 ppm from 33.2 ppm to 143.4 ppm, and HCl increased by 71.5 ppm from 340.5 ppm to 412.0 ppm. Thus, we confirmed that the attitude of the superheater tube was reduced by 87 ~ 93%, and the injection of ammonium sulfate was effective in preventing high-temperature corrosion.

Economic Analysis Study on the R&D Effect of Performance Improvement of the Tri-generation Fuel Cell System (연료전지 삼중열병합 시스템의 성능개선 R&D 효과에 대한 경제성 분석 연구)

  • Ahn, Jong-Deuk;Lee, Kwan-Young;Seo, Seok-Ho
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.26-39
    • /
    • 2022
  • Considering the recent substantial increase in national research and development (R&D) budgets in the energy sector there has been increased Interest in the effectiveness of government R&D investments. We conducted a case study to calculate the allowable scale and effectiveness of R&D investment by calculating the direct performance improvement effect resulting from R&D investment as an economic value. Using conditions that existed prior to R&D investments as a reference, five cases in which performance improved due to R&D investments were compared and analyzed. The government's financial investment is increasing rapidly in line with the establishment of the national hydrogen roadmap. R&D is needed to enhance the current low technology readiness level of hydrogen fuel cells compared to solar and wind energy fields. Therefore, an R&D project to improve the performance of the fuel cell system was selected as this case study's subject. Using the results in this study, the allowable level of investment in the task unit of national R&D projects could be calculated. Moreover, it is advisable to provide a standard for rational decision making for new R&D investments since it is possible to determine investment priorities among a large number of candidates.

Applications of 5G and 6G in Smart Health Services

  • Al-Jawad, Fatimah;Alessa, Raghad;Alhammad, Sukainah;Ali, Batoola;Al-Qanbar, Majd;Rahman, Atta-ur
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Healthcare organizations are overwhelmingly embracing smart value-based care strategies, which focuses on providing superior treatment at a significantly lower cost and quality of service (QoS). For these purposes, fifth generation (5G) of mobile service provides an innumerable improvement that clearly outperforms previous generations e.g., 3G and 4G. However, as with most advancements, 5G is projected to introduce new challenges, prompting the community to think about what comes next. This research was conducted to examine the most recent smart 5G technology applications and the solutions they provide to the healthcare industry. Finally, the paper discusses how the upcoming 6G technology has the potential to transform the future of healthcare sector even beyond the current 5G systems.

Nuclear power utilization as a future alternative energy on icebreakers

  • M. Bayraktar;M. Pamik
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.580-586
    • /
    • 2023
  • Diversified fuel types such as methanol, hydrogen, liquefied natural gas, ammonia, biofuels, have been come to fore in consideration of the limitations, regulations, environmental perception and efficient use of resources on maritime sector. NE is described as a substantial alternative energy source on the marine vessels in the sense of de-carbonization and fuel efficiency activities carried out by IMO. Although NPVs have been constructed for the merchant, navy and supply fields over the years, their numbers are few and working ranges are quite limited. NE generation techniques, reactor types, safety and security issues in case of any leakage or radiation pollution are analyzed and comparisons are performed between fossil-based fueled and NP based on icebreakers. The comparison are conducted on the basis of dimensions, resistances and operational competences by the VIKOR. NP icebreakers operated in recent years occupy a notable position in the ranking, although fossil fueled ones are most prevalent. Consequently, refueling period and emissions are the principal benefits of NPVs. Nevertheless, the use of such systems on marine vessels especially for merchant ships may come to the fore when all concerns in terms of safety, security and society are resolved since the slightest mistake can have irreversible consequences.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.