• Title/Summary/Keyword: Generation Prediction

Search Result 808, Processing Time 0.021 seconds

Prediction of Solar Photovoltaic Power Generation by Weather Using LSTM

  • Lee, Saem-Mi;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.23-30
    • /
    • 2022
  • Deep learning analyzes data to discover a series of rules and anticipates the future, helping us in various ways in our lives. For example, prediction of stock prices and agricultural prices. In this research, the results of solar photovoltaic power generation accompanied by weather are analyzed through deep learning in situations where the importance of solar energy use increases, and the amount of power generation is predicted. In this research, we propose a model using LSTM(Long Short Term Memory network) that stand out in time series data prediction. And we compare LSTM's performance with CNN(Convolutional Neural Network), which is used to analyze various dimensions of data, including images, and CNN-LSTM, which combines the two models. The performance of the three models was compared by calculating the MSE, RMSE, R-Squared with the actual value of the solar photovoltaic power generation performance and the predicted value. As a result, it was found that the performance of the LSTM model was the best. Therefor, this research proposes predicting solar photovoltaic power generation using LSTM.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

A Study on the Development of Critical Transmission Operating Constraint Prediction (CTOCP) System With High Wind Power Penetration (대규모 풍력발전 계통 연계시 주요 송전망 제약예측시스템 개발에 관한 연구)

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.86-93
    • /
    • 2015
  • Globally, wind power development is experiencing dramatic growth and wind power penetration levels are increasing. Wind generation is highly variable in time and space and it doesn't guarantee the system reliability and secure system operation. As wind power capacity becomes a significant portion of total generation capacity, the reliability assessment for wind power are therefore needed. At present, this operational reliability assessment is focusing on a generation adequacy perspective and does not consider transmission reliability issues. In this paper, we propose the critical transmission operating constraint prediction(CTOCP) system with high wind power penetration to enhance transmission reliability.

CFD Prediction on Vortex in Sump Intake at Pump Station (펌프 흡수정내 발생된 보텍스에 대한 CFD 예측)

  • Park, Sang-Eun;Roh, Hyung-Woon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • In large pump station, vortex generation such as free-surface vortex and submerged vortex occurring around pump intake, or at bell-mouth inlet has been an important flow characteristics which should be considered always to keep away the suction of air-entrained or cavitated flow. In this study, a commercial CFD code was used to predict accurately the vortex generation for the specified intake design. These result shows the preliminary result of submerged vortex prediction for the Turbo-machinery Society of Japan Sump Test CFD standard model. At bottom wall, air volume fraction (red color) was found in a large scale to explain the submerged vortex generation at particular operation and configuration condition. And these indicate the free surface formation behind the bell mouth. Particularly, non-uniform approaching flow is a major parameter to govern the occurrence of the free-surface vortex. Futhermore the comparison between turbulence ($k-{\epsilon}$ & $k-{\omega}$ model) mode were executed in this study.

A Usability Testing of the Word-Prediction Function of the AAC Keyboard for the People with Cerebral Palsy (보완대체의사소통(AAC) 글자판의 단어예측기능에 대한 뇌병변장애인 대상의 사용성 평가)

  • Lee, H.Y.;Hong, K-H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.3
    • /
    • pp.209-214
    • /
    • 2015
  • The purpose of this study was to examine (1) the influence of the word-prediction function on the sentence generation speed and (2) the necessity, convenience, and satisfaction of the word-prediction function of the AAC keyboard. A total of 10 adults with cerebral palsy participated and the word-prediction function of the Korean high-tech AAC device called "MyTalkie Smart" keyboard was used for this study. Participants were required to generate sentence as voice outputs using a word-prediction function and letters direct-input function respectively, then they were required to evaluate the necessity, convenience, and satisfaction using a five-point Likert scale. Other user requirements were examined using a free feedback. The results of this study presented that the sentence generation speeds were faster when participants used a word-prediction function than using a letters direct-input function. However, there was no statistically significant difference between these two input methods, and it might be due to the lack of time to practice the new device. Participants showed positive responses for the necessity, convenience, and satisfaction of the word-prediction function.

  • PDF

A study on the prediction of the generation of domestic sewage by improvement of water demand estimation (생활용수 수요추정방법 개선에 의한 하수발생량 예측에 관한 연구)

  • 김재윤
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1275-1279
    • /
    • 2002
  • This study was performed to improve water demand estimation and analize correlation between generation of domestic sewage and domestic water use. To improve the prediction of water demand estimation, new water demand equation was developed. The results is as follows. $InQ_t = {\beta}_0+{\beta}_1InP_t+{\beta}_2InY_t+{\beta}_3InH_t+{varepsilon}_t$By using the statistical analysis of the "generation of domestic sewage" and "domestic water use", the regression equation between them is formed. The result is as follows. Generation of domestic sewage : 0.8487 $\times$ Domestic water use + 684.57 ($R^2$= 0.972)>$R^2$= 0.972)

Prediction Model of Aerosol Generation for Cutting Fluid in Turning (선삭에서 절삭유 입자 발생 예측모델)

  • 박성호;오명석;고태조;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.69-76
    • /
    • 2004
  • This paper presents a prediction model for the aerosol generation of cutting fluid in turning process. Experimental studies have been carried out in order to identify the characteristics of aerosol generation in non-cutting and cutting cases. The indices of aerosol generation was mass concentration comparable to number generation, which is generally used fur environment criterion. Based on the experimental data, empirical model for predicting aerosol mass concentration of cutting fluid could be obtained by a statistical analysis. This relation shows good agreement with experimental data.

Implementation of machine learning-based prediction model for solar power generation (빅데이터를 활용한 머신러닝 기반 태양에너지 발전량 예측 모델)

  • Jong-Min Kim;Joon-hyung Lee
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.99-104
    • /
    • 2022
  • This study provided a prediction model for solar energy production in Yeongam province, Jeollanam-do. The model was derived from the correlation between climate changes and solar power production in Yeongam province, Jeollanam-do, and presented a prediction of solar power generation through the regression analysis of 6 parameters related to weather and solar power generation. The data used in this study were the weather and photovoltaic production data from January in 2016 to December in 2019 provided by public data. Based on the data, the machine learning technique was used to analyzed the correlation between weather change and solar energy production and derived to the prediction model. The model showed that the photovoltaic production can be categorized by the three-stage production index and will be used as an important barometer in the agriculture activity and the use of photovoltaic electricity.

Group key management protocol adopt to cloud computing environment (클라우드 컴퓨팅 환경에 적합한 그룹 키 관리 프로토콜)

  • Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Recurrent Neural Network based Prediction System of Agricultural Photovoltaic Power Generation (영농형 태양광 발전소에서 순환신경망 기반 발전량 예측 시스템)

  • Jung, Seol-Ryung;Koh, Jin-Gwang;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.825-832
    • /
    • 2022
  • In this paper, we discuss the design and implementation of predictive and diagnostic models for realizing intelligent predictive models by collecting and storing the power output of agricultural photovoltaic power generation systems. Our model predicts the amount of photovoltaic power generation using RNN, LSTM, and GRU models, which are recurrent neural network techniques specialized for time series data, and compares and analyzes each model with different hyperparameters, and evaluates the performance. As a result, the MSE and RMSE indicators of all three models were very close to 0, and the R2 indicator showed performance close to 1. Through this, it can be seen that the proposed prediction model is a suitable model for predicting the amount of photovoltaic power generation, and using this prediction, it was shown that it can be utilized as an intelligent and efficient O&M function in an agricultural photovoltaic system.