• 제목/요약/키워드: Generalized stability

Search Result 456, Processing Time 0.022 seconds

ON SOLUTIONS AND STABILITY OF A GENERALIZED QUADRATIC EQUATION ON NON-ARCHIMEDEAN NORMED SPACES

  • Janfada, Mohammad;Shourvarzi, Rahele
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.829-845
    • /
    • 2012
  • In this paper we study general solutions and generalized Hyers-Ulam-Rassias stability of the following function equation $$f(x-\sum^{k}_{i=1}x_i)+(k-1)f(x)+(k-1)\sum^{k}_{i=1}(x_i)=f(x-x_1)+\sum^{k}_{i=2}f(x_i-x)+\sum^{k}_{i=1}\sum^{k}_{j=1,j > i}f(x_i+x_j)$$. for $k{\geq}2$, on non-Archimedean Banach spaces. It will be proved that this equation is equivalent to the so-called quadratic functional equation.

ON THE STABILITY OF RADICAL FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES

  • Cho, Yeol Je;Gordji, Madjid Eshaghi;Kim, Seong Sik;Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1511-1525
    • /
    • 2014
  • In this paper, we prove the generalized Hyers-Ulam stability results controlled by considering approximately mappings satisfying conditions much weaker than Hyers and Rassias conditions for radical quadratic and radical quartic functional equations in quasi-${\beta}$-normed spaces.

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

Mathematical modelling of the stability of carbon nanotube-reinforced panels

  • Sobhani Aragh, B.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2017
  • The present paper studies the stability analysis of the continuously graded CNT-Reinforced Composite (CNTRC) panel stiffened by rings and stringers. The Stiffened Panel (SP) subjected to axial and lateral loads is reinforced by agglomerated CNTs smoothly graded through the thickness. A two-parameter Eshelby-Mori-Tanaka (EMT) model is adopted to derive the effective material moduli of the CNTRC. The stability equations of the CNRTC SP are obtained by means of the adjacent equilibrium criterion. Notwithstanding most available literature in which the stiffener effects were smeared out over the respective stiffener spacing, in the present work, the stiffeners are modeled as Euler-Bernoulli beams. The Generalized Differential Quadrature Method (GDQM) is employed to discretize the stability equations. A numerical study is performed to investigate the influences of different types of parameters involved on the critical buckling of the SP reinforced by agglomerated CNTs. The results achieved reveal that continuously distributing of CNTs adjacent to the inner and outer panel's surface results in improving the stiffness of the SP and, as a consequence, inclining the critical buckling load. Furthermore, it has been concluded that the decline rate of buckling load intensity factor owing to the increase of the panel angle is significantly more sensible for the smaller values of panel angle.

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Huang, Jinghao;Jung, Soon-Mo;Li, Yongjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.685-697
    • /
    • 2015
  • We investigate the stability of nonlinear differential equations of the form $y^{(n)}(x)=F(x,y(x),y^{\prime}(x),{\cdots},y^{(n-1)}(x))$ with a Lipschitz condition by using a fixed point method. Moreover, a Hyers-Ulam constant of this differential equation is obtained.

NEW RESULTS ON STABILITY PROPERTIES FOR THE FEYNMAN INTEGRAL VIA ADDITIVE FUNCTIONALS

  • Lim, Jung-Ah
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.559-577
    • /
    • 2002
  • It is known that the analytic operator-valued Feynman integral exists for some "potentials" which we so singular that they must be given by measures rather than by functions. Corresponding stability results involving monotonicity assumptions have been established by the author and others. Here in our main theorem we prove further stability theorem without monotonicity requirements.

ON THE STABILITY OF A BI-JENSEN FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Lee, Yang-Hi;Oh, Jeong-Ha
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.231-247
    • /
    • 2010
  • In this paper, we investigate the generalized Hyers-Ulam stability of a bi-Jensen functional equation $4f(\frac{x\;+\;y}{2},\;\frac{z\;+\;w}{2})$ = f(x, z) + f(x, w) + f(y, z) + f(y, w). Also, we establish improved results for the stability of a bi-Jensen equation on the punctured domain.

ON THE STABILITY OF A BETA TYPE FUNCTIONAL EQUATIONS

  • Kim, Gwang-Hui;Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.429-445
    • /
    • 2004
  • In this paper we investigate the generalized Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(x,y)){\;}={\;}\phi(x,y)f(x,y)$, where x, y lie in the set S. As a consequence we obtain stability in the sense of Hyers, Ulam, Rassias, Gavruta, for some well-known equations such as the gamma, beta and G-function type equations.