• Title/Summary/Keyword: Generalized partial sum

Search Result 5, Processing Time 0.021 seconds

CONVOLUTION PROPERTIES FOR GENERALIZED PARTIAL SUMS

  • Silberman, Herb
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.601-607
    • /
    • 1996
  • For functions $f(z) = \sum_{n = 0}^{\infty}a_n z^n$ and $g(z) = \sum_{n = 0}^{\infty} b_n z^n$ analytic in the unit disk $\Delta = {z : $\mid$z$\mid$ < 1}$, the convolution $f * g$ is defined by $(f * g)(z) = \sum_{n = 0}^{\infty}a_n b_n z^n$. Let S denote the family of functions $f(z) = z + \cdots$ analytic and univalent in $\Delta$ and K, St, C the subfamilies that are respectively convex, starlike, and close-to-convex.

  • PDF

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION

  • KIM, HYUN-CHULL;KIM, TAE-SUNG
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.531-538
    • /
    • 2005
  • In this paper we derive the central limit theorem for ${\sum}_{i=1}^n\;a_{ni}\xi_i$, where ${a_{ni},\;1\;{\leq}\;i\;{\leq}\;n}$ is a triangular array of nonnegative numbers such that $sup_n{\sum}_{i=1}^n\;a_{ni}^2\;<\;{\infty},\;max_{1{\leq}i{\leq}n}a_{ni}{\rightarrow}0\;as\;n\;{\rightarrow}\;{\infty}\;and\;\xi'_i\;s$ are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process $X_n\;=\;\sum_{j=-\infty}^\infty\;a_k+_j{\xi}_j$.

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LPQD RANDOM VARIABLES AND ITS APPLICATION

  • Ko, Mi-Hwa;Kim, Hyun-Chull;Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.529-538
    • /
    • 2006
  • In this paper we derive the central limit theorem for ${\sum}^n_{i=l}\;a_{ni}{\xi}_{i},\;where\;\{a_{ni},\;1\;{\le}\;i\;{\le}n\}$ is a triangular array of non-negative numbers such that $sup_n{\sum}^n_{i=l}\;a^2_{ni}\;<\;{\infty},\;max_{1{\le}i{\le}n\;a_{ni}{\to}\;0\;as\;n{\to}{\infty}\;and\;{\xi}'_{i}s$ are a linearly positive quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process of the form $X_n\;=\;{\sum}^{\infty}_{j=-{\infty}}a_{k+j}{\xi}_{j}$.

GENERALIZED CONVOLUTION OF UNIFORM DISTRIBUTIONS

  • Kang, Jong-Seong;Kim, Sung-Lai;Kim, Yang-Hee;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1573-1581
    • /
    • 2010
  • we investigate the n-fold convolution of the uniform distributions. First, we are concerned with the explicit distribution function of the partial sum ${\zeta}_n$ when the random variables are independent and has identically uniform distribution, next, we determine the n-fold convolution distribution of ${\zeta}_n$ when the identically distributed condition is not satisfied.

DEGREE OF APPROXIMATION FOR BIVARIATE SZASZ-KANTOROVICH TYPE BASED ON BRENKE TYPE POLYNOMIALS

  • Begen, Selin;Ilarslan, H. Gul Ince
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.251-268
    • /
    • 2020
  • In this paper, we estimate the degree of approximation by means of the complete modulus of continuity, the partial modulus of continuity, the Lipschitz-type class and Petree's K-functional for the bivariate Szász-Kantorovich operators based on Brenke-type polynomials. Later, we construct Generalized Boolean Sum operators associated with combinations of the Szász-Kantorovich operators based on Brenke-type polynomials. In addition, we obtain the rate of convergence for the GBS operators with the help of the mixed modulus of continuity and the Lipschitz class of the Bögel continuous functions.