References
- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968
- P. Birkel, A functional central limit theorem for positively dependent random variables, J. Multivariate Anal. 44 (1993), 314-320 https://doi.org/10.1006/jmva.1993.1018
- J. T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation model, Ann. Probab. 12 (1984), 514-528 https://doi.org/10.1214/aop/1176993303
- I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Volters, Groningen, 1971
- T. S. Kim and J. L. Baek, A central limit theorem for stationary linear processes generated by linearly positive quadrant dependent process, Statist. Probab. Lett. 5 (2001), 299-305 https://doi.org/10.1016/0167-7152(87)90109-X
- E. L. Lehmann, Some concepts of dependence, Ann. Statist. 37 (1966), 1137-1153 https://doi.org/10.1214/aoms/1177699260
- C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, In: Tong, Y. L.(Ed.), Stochastics and Probability 5 (1984), 127-140(Inst. Math. Statist. Hayward, C.A.) https://doi.org/10.1214/lnms/1215465639
- E. L. Lehmann, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 91 (1980), 75-80
- W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974
Cited by
- On the Exponential Inequality for Weighted Sums of a Class of Linearly Negative Quadrant Dependent Random Variables vol.2014, 2014, https://doi.org/10.1155/2014/748242