Browse > Article
http://dx.doi.org/10.4134/CKMS.2005.20.3.531

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION  

KIM, HYUN-CHULL (Division of Computer and Information Science Daebul University)
KIM, TAE-SUNG (Division of Mathematics and Informational Statistics and Institute of Basic Natural Science WonKwang University)
Publication Information
Communications of the Korean Mathematical Society / v.20, no.3, 2005 , pp. 531-538 More about this Journal
Abstract
In this paper we derive the central limit theorem for ${\sum}_{i=1}^n\;a_{ni}\xi_i$, where ${a_{ni},\;1\;{\leq}\;i\;{\leq}\;n}$ is a triangular array of nonnegative numbers such that $sup_n{\sum}_{i=1}^n\;a_{ni}^2\;<\;{\infty},\;max_{1{\leq}i{\leq}n}a_{ni}{\rightarrow}0\;as\;n\;{\rightarrow}\;{\infty}\;and\;\xi'_i\;s$ are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process $X_n\;=\;\sum_{j=-\infty}^\infty\;a_k+_j{\xi}_j$.
Keywords
central limit theorem; linear process; linearly negative quadrant dependent; uniformly integrable; triangular array;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968
2 P. Birkel, A functional central limit theorem for positively dependent random variables, J. Multivariate Anal. 44 (1993), 314-320   DOI   ScienceOn
3 I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Volters, Groningen, 1971
4 T. S. Kim and J. L. Baek, A central limit theorem for stationary linear processes generated by linearly positive quadrant dependent process, Statist. Probab. Lett. 5 (2001), 299-305   DOI   ScienceOn
5 E. L. Lehmann, Some concepts of dependence, Ann. Statist. 37 (1966), 1137-1153   DOI   ScienceOn
6 C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, In: Tong, Y. L.(Ed.), Stochastics and Probability 5 (1984), 127-140(Inst. Math. Statist. Hayward, C.A.)   DOI
7 E. L. Lehmann, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 91 (1980), 75-80
8 W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974
9 J. T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation model, Ann. Probab. 12 (1984), 514-528   DOI   ScienceOn