• Title/Summary/Keyword: Generalized cylinder

Search Result 64, Processing Time 0.023 seconds

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.

Simulation of the gas exchange process for single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 흡.배기 과정의 시뮬레이션)

  • 윤건식;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.24-34
    • /
    • 1985
  • The study of unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 4-stroke cycle spark ignition engine is presented in this paper. The generalized method of characteristics including friction, heat transfer, change of flow area and entropy gradients was used for solving the equations defining the gas exchange process. The path line calculation was also conducted to allow for calculation of the gas composition and entropy change along the path lines, and of the variable specific heat due to the change of temperature and composition. As the result of the simulation, the properties at each point in the inlet and exhaust pipe, pressure and temperature in the cylinder, and charging efficiency were obtained. Pumping loss and residual gas fraction were also computed. The effect of engine speed, exhaust and inlet pipe length on the pumping loss and charging efficiency were studied showing that the results were in agreement with what has been known from experiments.

  • PDF

A CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT WITH CHANGE OF SCALES ON A FUNCTION SPACE I

  • Cho, Dong Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.687-704
    • /
    • 2017
  • Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman transform of the convolution product can be expressed in terms of the product of the conditional FourierFeynman transforms of each function. Finally we establish change of scale formulas for the generalized analytic conditional Fourier-Feynman transform and the conditional convolution product. In this evaluation formulas and change of scale formulas we use multivariate normal distributions so that the orthonormalization process of projection vectors which are essential to establish the conditional expectations, can be removed in the existing conditional Fourier-Feynman transforms, conditional convolution products and change of scale formulas.

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.

Parametric Vessel Modeling for Simulation of Coronary Artery Bypass Graft (관상동맥우회시술 시뮬레이션을 위한 동적 혈관 매개변수모델링)

  • Song SooMin;Lee Yubu;Choi YooJoo;Kim MyoungHee
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.130-137
    • /
    • 2005
  • 본 논문은 심장이 수축$\cdot$이완함에 따라 그 형태와 위치가 변하는 관상동맥의 구조와 그 움직임을 사실적으로 표현하기 위한 매개변수적 모델링 기법을 제안한다. 완성된 모델은 관상동맥의 움직임을 관찰함으로써 심장질환 판단에 도움을 주고, 심장시술 시뮬레이션 및 시술계획수립에 사용될 수 있다. 매개변수적 기법으로 생성된 모델은 메쉬 정점의 인덱스만으로 모델간 매칭을 위한 대응점을 찾을 수 있으므로, 시간대별로 달라지는 정점의 위치를 쉽게 추적함으로써 모델의 움직임을 표현할 수 있다. 그러나 이러한 기법으로 생성된 모델은 분리, 접합 등의 변형조작이 어렵고, 트리형태 객체에 적용하기 힘든 단점이 있다. 본 논문에서는 이를 극복하기 위해 분할된 혈관영역의 골격데이타에서 찾아낸 분기점을 중심으로 Generalized Cylinder를 이용하여 실린더 형태의 각 혈관세그먼트를 모델링 한 후, 분기영역을 3개의 하프파이프(half pipe)와 2개의 삼각형 패치로 연결하여 모델링하였다. 완성된 모델은 다시점 관상동맥데이터에 적용하였고, 각 시점에서 구해진 정점의 위치를 선형보간함으로써 부드러운 혈관의 움직임을 나타내었다.

  • PDF

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

Vortex breakdown in an axisymmetric circular cylinder with rotating cones (회전하는 원뿔의 각도에 따른 축 대칭 원통형 용기에서의 와동붕괴에 관한 연구)

  • Kim, J.W.;Eum, Ch.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 1997
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with an impulsively rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is only the vertex angle of the cone, otherwise Reynolds number and aspect ratio of the vessel are fixed. Main interest concerns on the vortex breakdown of meridional circulation by impulsive rotation of the cone with respect to the longitudinal axis of the cylinder. Numerical method has been used to integrate momentum and continuity equations on a generalized body-fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat endwall disks. The flow visualization photograph of the preceeding work by Escudier is compared with the present numerical results and the two results are in good agreements. Also flow data are plotted to gain a deep understanding for the present phenomena of the vortex breakdown. The conclusions of this work are clearly explained by the classical theory of the vortex flows in a finite geometry.

  • PDF