A CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT WITH CHANGE OF SCALES ON A FUNCTION SPACE I

Dong Hyun Cho

Abstract

Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman transform of the convolution product can be expressed in terms of the product of the conditional FourierFeynman transforms of each function. Finally we establish change of scale formulas for the generalized analytic conditional Fourier-Feynman transform and the conditional convolution product. In this evaluation formulas and change of scale formulas we use multivariate normal distributions so that the orthonormalization process of projection vectors which are essential to establish the conditional expectations, can be removed in the existing conditional Fourier-Feynman transforms, conditional convolution products and change of scale formulas.

1. Introduction

Let $C_{0}[0, T]$ denote the Wiener space, that is, the space of real-valued continuous functions x on the closed interval $[0, T]$ with $x(0)=0$. On the space $C_{0}[0, T]$, the analytic conditional Fourier-Feynman transform and conditional convolution product are introduced by Chang and Skoug [3]. In that paper they also investigated the effects that drift has on the conditional Fourier-Feynman transform, the conditional convolution product, and various relationships that occur between them. Im and Ryu [9] introduced an analogue of Wiener space $C[0, T]$, the space of real-valued continuous functions on $[0, T]$, which generalizes $C_{0}[0, T]$. The author [4] introduced a generalized conditional Wiener integral with drift on $C[0, T]$ and then, derived two simple formulas which calculate the conditional expectations in terms of ordinary expectations, that is,

[^0]non-conditional expectations. Using the simple formulas on $C[0, T]$, the author and his coauthors $[5,6,7]$ established a conditional analytic Fourier-Feynman transform, a conditional convolution product which has no drift, and change of scale formulas for conditional Wiener integrals which simplify the evaluations of the analytic conditional Feynman integrals, because the measure used on $C[0, T]$ is not scale-invariant $[1,2]$.

Let a be in $C[0, T]$ and let h be of bounded variation with $h \neq 0$ a.e. on $[0, T]$. Define a stochastic process $Z: C[0, T] \times[0, T] \rightarrow \mathbb{R}$ by

$$
Z(x, t)=\int_{0}^{t} h(s) d x(s)+x(0)+a(t)
$$

for $x \in C[0, T]$ and for $t \in[0, T]$, where the integral denotes a generalized Paley-Wiener-Zygmund stochastic integral. For a partition $t_{0}=0<t_{1}<$ $\cdots<t_{n}=T$ of $[0, T]$, define a random vector $Z_{n}: C[0, T] \rightarrow \mathbb{R}^{n+1}$ by

$$
Z_{n}(x)=\left(Z\left(x, t_{0}\right), Z\left(x, t_{1}\right), \ldots, Z\left(x, t_{n}\right)\right) .
$$

Using a simple formula for a generalized conditional Wiener integral on $C[0, T]$ with the conditioning function Z_{n} [4], we evaluate a generalized analytic conditional Fourier-Feynman transform and conditional convolution product of the following generalized cylinder function

$$
F_{Z}(x)=f\left(\int_{0}^{T} v_{1}(s) d Z(x, s), \ldots, \int_{0}^{T} v_{r}(s) d Z(x, s)\right)
$$

where $f \in L_{p}\left(\mathbb{R}^{r}\right)$ with $1 \leq p \leq \infty$ and $\left\{v_{1}, \ldots, v_{r}\right\}$ is an orthonormal subset of $L_{2}[0, T]$. We then investigate several relationships between the conditional Fourier-Feynman transforms and the conditional convolution products of the cylinder functions. In fact we show that the L_{p}-analytic conditional FourierFeynman transform $T_{q}^{(p)}\left[\left[\left(F_{Z} * G_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]$ of the conditional convolution product for the cylinder functions F_{Z} and G_{Z}, can be expressed by the formula

$$
\begin{aligned}
& T_{q}^{(p)}\left[\left[\left(F_{Z} * G_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & {\left[T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right] } \\
& \times\left[T_{q}^{(p)}\left[G_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y-a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right]
\end{aligned}
$$

for a nonzero real q, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$, where $P_{Z_{n}}$ is the probability distribution of Z_{n} on the Borel class of \mathbb{R}^{n+1}. Thus the analytic conditional Fourier-Feynman transform of the conditional convolution product for the cylinder functions, can be interpreted as the product of the conditional analytic Fourier-Feynman transforms of each function. Finally we establish various change of scale formulas for the analytic conditional Fourier-Feynman transforms and the conditional convolution products.

In this evaluation formulas and change of scale formulas we use multivariate normal distributions so that Gram-Schmidt orthonormalization process of $\left\{\mathcal{P}^{\perp}\left(h v_{1}\right), \ldots, \mathcal{P}^{\perp}\left(h v_{r}\right)\right\}$ can be removed in the existing conditional FourierFeynman transforms, conditional convolution products and change of scale formulas for a suitable orthogonal projection \mathcal{P}^{\perp} on $L_{2}[0, T]$.

2. An analogue of Wiener space and preliminary results

We begin this section with introducing an analogue of Wiener space which is our underlying space.

For a positive real T let $C[0, T]$ denote the space of real-valued continuous functions on the time interval $[0, T]$ with the supremum norm. For $\vec{t}=\left(t_{0}, t_{1}, \ldots, t_{n}\right)$ with $0=t_{0}<t_{1}<\cdots<t_{n} \leq T$ let $J_{\vec{t}}: C[0, T] \rightarrow \mathbb{R}^{n+1}$ be the function given by

$$
J_{\vec{t}}(x)=\left(x\left(t_{0}\right), x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right)
$$

For $B_{j}(j=0,1, \ldots, n)$ in the Borel class $\mathcal{B}(\mathbb{R})$ of \mathbb{R}, the subset $J_{\vec{t}}^{-1}\left(\prod_{j=0}^{n} B_{j}\right)$ of $C[0, T]$ is called an interval and let \mathcal{I} be the set of all such intervals. For a probability measure φ on $\mathcal{B}(\mathbb{R})$, let

$$
m_{\varphi}\left[J_{\vec{t}}^{-1}\left(\prod_{j=0}^{n} B_{j}\right)\right]=\left[\prod_{j=1}^{n} \frac{1}{2 \pi\left(t_{j}-t_{j-1}\right)}\right]^{\frac{1}{2}} \int_{B_{0}} \int_{\prod_{j=1}^{n} B_{j}} W_{n}\left(\vec{t}, \vec{u}, u_{0}\right) d \vec{u} d \varphi\left(u_{0}\right)
$$

where for $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$

$$
W\left(\vec{t}, \vec{u}, u_{0}\right)=\exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(u_{j}-u_{j-1}\right)^{2}}{t_{j}-t_{j-1}}\right\}
$$

$\mathcal{B}(C[0, T])$, the Borel σ-algebra of $C[0, T]$, coincides with the smallest σ-algebra generated by \mathcal{I} and there exists a unique probability measure w_{φ} on $C[0, T]$ such that $w_{\varphi}(I)=m_{\varphi}(I)$ for all $I \in \mathcal{I}$. This measure w_{φ} is called an analogue of Wiener measure associated with the probability measure $\varphi[9]$.

Let $\left\{e_{k}: k=1,2, \ldots\right\}$ be a complete orthonormal subset of $L_{2}[0, T]$ such that each e_{k} is of bounded variation. For $v \in L_{2}[0, T]$ and x in $C[0, T]$ let

$$
(v, x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int_{0}^{T}\left\langle v, e_{k}\right\rangle e_{k}(t) d x(t)
$$

if the limit exists, where $\langle\cdot, \cdot\rangle$ denotes the inner product over $L_{2}[0, T] .(v, x)$ is called the Paley-Wiener-Zygmund integral of v according to x.

Let \mathbb{C} and \mathbb{C}_{+}denote the sets of complex numbers and complex numbers with positive real parts, respectively. Let $F: C[0, T] \rightarrow \mathbb{C}$ be integrable and X be a random vector on $C[0, T]$ assuming that the value space of X is a normed space with the Borel σ-algebra. Then we have the conditional expectation $E[F \mid X]$ of F given X from a well-known probability theory [12]. Furthermore
there exists a P_{X} integrable complex-valued function ψ on the value space of X such that

$$
E[F \mid X](x)=(\psi \circ X)(x) \text { for } w_{\varphi} \text { a.e. } x \in C[0, T]
$$

where P_{X} is the probability distribution of X. The function ψ is called the conditional w_{φ}-integral of F given X and it is also denoted by $E[F \mid X]$.

Let $0=t_{0}<t_{1}<\cdots<t_{n}=T$ of a partition of $[0, T]$, where n is a fixed nonnegative integer. Let h be of bounded variation with $h \neq 0$ a.e. on $[0, T]$. Let a be absolutely continuous on $[0, T]$ and define stochastic processes $X, Z: C[0, T] \times[0, T] \rightarrow \mathbb{R}$ by

$$
X(x, t)=\left(h \chi_{[0, t]}, x\right) \text { and } Z(x, t)=X(x, t)+x(0)+a(t)
$$

for $x \in C[0, T]$ and for $t \in[0, T]$, where χ denotes an indicator function. Define a random vector $Z_{n}: C[0, T] \rightarrow \mathbb{R}^{n+1}$ by

$$
Z_{n}(x)=\left(Z\left(x, t_{0}\right), Z\left(x, t_{1}\right), \ldots, Z\left(x, t_{n}\right)\right)
$$

for $x \in C[0, T]$. For $t \in[0, T]$ let $b(t)=\int_{0}^{t}[h(s)]^{2} d s$ and for any function f on $[0, T]$ define a polygonal function $P_{b, n}(f)$ of f by

$$
\begin{align*}
P_{b, n}(f)(t)= & \sum_{j=1}^{n}\left[\frac{b\left(t_{j}\right)-b(t)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)} f\left(t_{j-1}\right)+\frac{b(t)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)} f\left(t_{j}\right)\right] \tag{1}\\
& \times \chi_{\left(t_{j-1}, t_{j}\right]}(t)+f(0) \chi_{\{0\}}(t)
\end{align*}
$$

for $t \in[0, T]$. For $\vec{\xi}_{n}=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n+1}$ define a polygonal function $P_{b, n}\left(\vec{\xi}_{n}\right)$ of $\vec{\xi}_{n}$ by (1), where $f\left(t_{j}\right)$ is replaced by ξ_{j}. For $x \in C[0, T]$ and for $t \in[0, T]$ let

$$
\begin{equation*}
A(t)=a(t)-P_{b, n}(a)(t), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
X_{b, n}(x, t)=X(x, t)-P_{b, n}(X(x, \cdot))(t) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
Z_{b, n}(x, t)=Z(x, t)-P_{b, n}(Z(x, \cdot))(t) . \tag{4}
\end{equation*}
$$

For a function $F: C[0, T] \rightarrow \mathbb{C}$ let

$$
F_{Z}(x, y)=F(Z(x, \cdot)+y) \text { for } x, y \in C[0, T] .
$$

By Theorem 6 in [4], we have the following theorem.
Theorem 2.1. Let F be a complex valued function on $C[0, T]$ and F_{Z} be integrable with respect to x. Then for $y \in C[0, T]$ and for $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$

$$
E\left[F_{Z}(\cdot, y) \mid Z_{n}\right]\left(\vec{\xi}_{n}\right)=\int_{C[0, T]} F\left(Z_{b, n}(x, \cdot)+y+P_{b, n}\left(\vec{\xi}_{n}\right)\right) d w_{\varphi}(x)
$$

where $Z_{b, n}$ is given by (4), $P_{Z_{n}}$ is the probability distribution of Z_{n} on $\left(\mathbb{R}^{n+1}\right.$, $\left.\mathcal{B}\left(\mathbb{R}^{n+1}\right)\right)$.

For $\lambda>0$ and $x, y \in C[0, T]$, let $F_{Z}^{\lambda}(x, y)=F_{Z}\left(\lambda^{-\frac{1}{2}} x, y\right)$ and $Z_{n}^{\lambda}(x)=$ $Z_{n}\left(\lambda^{-\frac{1}{2}} x\right)$. Suppose that $E\left[F_{Z}^{\lambda}(\cdot, y)\right]$ exists, where the expectation is taken over the first variable. By Theorem 2.1 and Lemma 2.1 in [11] we have for $y \in C[0, T]$
(5) $E\left[F_{Z}^{\lambda}(\cdot, y) \mid Z_{n}^{\lambda}\right]\left(\vec{\xi}_{n}\right)=\int_{C[0, T]} F\left(\lambda^{-\frac{1}{2}} X_{b, n}(x, \cdot)+y+A+P_{b, n}\left(\vec{\xi}_{n}\right)\right) d w_{\varphi}(x)$
for $P_{Z_{n}^{\lambda}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$, where A and $X_{b, n}$ are given by (2) and (3), respectively, and $P_{Z_{n}^{\lambda}}$ is the probability distribution of Z_{n}^{λ} on $\left(\mathbb{R}^{n+1}, \mathcal{B}\left(\mathbb{R}^{n+1}\right)\right)$.

For an extended real number p with $1<p \leq \infty$ suppose that p and p^{\prime} are related by $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ (possibly $p^{\prime}=1$ if $\left.p=\infty\right)$. Let $q \in \mathbb{R}-\{0\}, F_{\lambda}$ and F be measurable functions on $C[0, T]$ for $\lambda \in \mathbb{C}_{+}$such that

$$
\begin{equation*}
\lim _{\lambda \rightarrow-i q} \int_{C[0, T]}\left|F_{\lambda}(x)-F(x)\right|^{p^{\prime}} d w_{\varphi}(x)=0 \tag{6}
\end{equation*}
$$

Then we write

$$
\underset{\lambda \rightarrow-i q}{\operatorname{l.i.m.}}\left(w^{p^{\prime}}\right)\left(F_{\lambda}\right)=F
$$

Let $I_{F_{Z}}^{\lambda}\left(y, \vec{\xi}_{n}\right)$ be the right-hand side of (5). If, for w_{φ} a.e. $y \in C[0, T]$ and for $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}, I_{F_{Z}}^{\lambda}\left(y, \vec{\xi}_{n}\right)$ has an analytic extension $J_{\lambda}^{*}\left(F_{Z}\right)\left(y, \vec{\xi}_{n}\right)$ on \mathbb{C}_{+}, then it is called a generalized analytic conditional Fourier-Wiener transform of F given Z_{n} with the parameter λ and denoted by

$$
T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=J_{\lambda}^{*}\left(F_{Z}\right)\left(y, \vec{\xi}_{n}\right)
$$

for $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$. Moreover if $T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ has a limit as λ approaches to $-i q$ through \mathbb{C}_{+}, then it is called a generalized L_{1}-analytic conditional FourierFeynman transform of F given Z_{n} with the parameter q and denoted by

$$
T_{q}^{(1)}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=\lim _{\lambda \rightarrow-i q} T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)
$$

For $1<p \leq \infty$, define a generalized L_{p}-analytic conditional Fourier-Feynman transform $T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]$ of F given Z_{n} by the formula

$$
T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right)=\underset{\lambda \rightarrow-i q}{\operatorname{li.mm}_{i}}\left(w^{p^{\prime}}\right)\left(T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right)\right) \text { (if exists). }
$$

For $j=1, \ldots, n$ let

$$
\alpha_{j}=\frac{1}{\left\|\chi_{\left(t_{j-1}, t_{j}\right]} h\right\|} \chi_{\left(t_{j-1}, t_{j}\right]} h
$$

let V be the subspace of $L_{2}[0, T]$ generated by $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and let V^{\perp} be the orthogonal complement of V. Let $\mathcal{P}: L_{2}[0, T] \rightarrow V$ be the orthogonal projection given by

$$
\mathcal{P} v=\sum_{j=1}^{n}\left\langle v, \alpha_{j}\right\rangle \alpha_{j}
$$

and let $\mathcal{P}^{\perp}: L_{2}[0, T] \rightarrow V^{\perp}$ be an orthogonal projection.

The following lemma is useful to prove the results in the next sections [11].
Lemma 2.2. Let $v \in L_{2}[0, T]$. Then for w_{φ} a.e. $x \in C[0, T]$

$$
(v, X(x, \cdot))=\left(M_{h} v, x\right) \text { and }\left(v, P_{b, n}(X(x, \cdot))\right)=\left(\mathcal{P} M_{h} v, x\right) \text {, }
$$

where $M_{h}: L_{2}[0, T] \rightarrow L_{2}[0, T]$ is the multiplication operator defined by

$$
M_{h} u=h u \text { for } u \in L_{2}[0, T] .
$$

For simplicity let

$$
(\vec{v}, x)=\left(\left(v_{1}, x\right), \ldots,\left(v_{r}, x\right)\right)
$$

for $x \in C[0, T]$ and for $\left\{v_{1}, \ldots, v_{r}\right\} \subseteq L_{2}[0, T]$. For $\vec{a}, \vec{u} \in \mathbb{R}^{r}, \lambda \in \mathbb{C}$ and for any nonsingular positive $r \times r$ matrix A_{r} on \mathbb{R}, let

$$
\begin{equation*}
\Psi_{r}\left(\lambda, \vec{a}, A_{r}, \vec{u}\right)=\left[\frac{\lambda^{r}}{(2 \pi)^{r}\left|A_{r}\right|}\right]^{\frac{1}{2}} \exp \left\{-\frac{\lambda}{2}\left\langle A_{r}^{-1}(\vec{u}-\vec{a}), \vec{u}-\vec{a}\right\rangle_{\mathbb{R}}\right\} \tag{7}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{\mathbb{R}}$ denotes the dot product on \mathbb{R}^{r}. Let I_{r} be the $r \times r$ identity matrix.
The following lemma is useful to prove the results in the next sections [5].
Lemma 2.3. Let $\left\{v_{1}, \ldots, v_{r}\right\}$ be a subset of $L_{2}[0, T]$ such that $\left\{M_{h} v_{1}, \ldots\right.$, $\left.M_{h} v_{r}\right\}$ is an independent set. Then the random vector $(\vec{v}, Z(x, \cdot))$ has the multivariate normal distribution [12] with mean vector (\vec{v}, a) and covariance matrix $\Sigma_{M_{h}}=\left[\left\langle M_{h} v_{i}, M_{h} v_{j}\right\rangle\right]_{r \times r}$. Moreover, for any Borel measurable function $f: \mathbb{R}^{r+1} \rightarrow \mathbb{C}$, we have

$$
\begin{aligned}
& \int_{C[0, T]} f(x(0),(\vec{v}, Z(x, \cdot))) d w_{\varphi}(x) \\
\stackrel{*}{=} & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}} f\left(u_{0}, \vec{u}\right) \Psi_{r}\left(1,(\vec{v}, a), \Sigma_{M_{h}}, \vec{u}\right) d \varphi\left(u_{0}\right) d \vec{u} \\
\stackrel{*}{=} & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}} f\left(u_{0}, \Sigma_{M_{h}}^{\frac{1}{2}} \vec{u}+(\vec{v}, a)\right) \Psi_{r}\left(1, \overrightarrow{0}, I_{r}, \vec{u}\right) d \varphi\left(u_{0}\right) d \vec{u},
\end{aligned}
$$

where $\stackrel{*}{=}$ means that if either side exists, then both sides exist and they are equal.

Remark 2.4. (1) If φ is the Dirac measure δ_{0} concentrated at 0 , then we can obtain the definition of the conditional Fourier-Feynman transform on the classical Wiener space [3].
(2) Because the Borel sets of $C[0, T]$ are always scale-invariant measurable and we use the Borel class of $C[0, T]$ on which w_{φ} is defined, the scaleinvariant measurability is not essential in (6).

3. Generalized conditional Fourier-Feynman transforms

Let $1 \leq p \leq \infty$, let r be any fixed positive integer, let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be an orthonormal subset of $L_{2}[0, T]$ such that both $\left\{M_{h} v_{1}, \ldots, M_{h} v_{r}\right\}$ and
$\left\{\mathcal{P}^{\perp} M_{h} v_{1}, \ldots, \mathcal{P}^{\perp} M_{h} v_{r}\right\}$ are independent sets. Let $\mathcal{A}^{(p)}$ be the space of cylinder functions F having the form

$$
\begin{equation*}
F(x)=f((\vec{v}, x)) \tag{8}
\end{equation*}
$$

for w_{φ} a.e. $x \in C[0, T]$, where $f \in L_{p}\left(\mathbb{R}^{r}\right)$. Without loss of generality we can take f to be Borel measurable.

Theorem 3.1. Let $1 \leq p \leq \infty$ and let $F\left(\in \mathcal{A}^{(p)}\right)$ be given by (8). Then for $\lambda \in \mathbb{C}_{+}$

$$
\begin{align*}
& \quad T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right) \tag{9}\\
& = \\
& \int_{\mathbb{R}^{r}} f(\vec{u}) \Psi_{r}\left(\lambda,(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \vec{u}\right) d \vec{u} \\
& = \\
& \text { for } \left.\left.w_{\varphi} \text { a.e. } y \in C[0, T] \text { and a.e. } \vec{\xi}_{n} \in A, \cdot\right) * \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \cdot\right)\right)\left(\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}(\vec{v}, y)\right)
\end{align*}
$$

$$
\begin{equation*}
f_{1}\left(\vec{\xi}_{n}, A, \vec{u}\right)=f\left(\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}} \vec{u}+\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right) \tag{10}
\end{equation*}
$$

and A is given by (2). Moreover $T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(p)}$.
Proof. For $j=1, \ldots, r$ and w_{φ} a.e. $x \in C[0, T]$ we have by Lemma 2.2

$$
\left(v_{j}, X_{b, n}(x, \cdot)\right)=\left(\mathcal{P}^{\perp} M_{h} v_{j}, x\right)
$$

so that for $\lambda>0, y \in C[0, T]$ and $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$ we have by Lemma 2.3

$$
\begin{aligned}
I_{F_{Z}}^{\lambda}\left(y, \vec{\xi}_{n}\right)= & \int_{C[0, T]} f\left(\lambda^{-\frac{1}{2}}\left(\left(\mathcal{P}^{\perp} M_{h} v_{1}, x\right), \ldots,\left(\mathcal{P}^{\perp} M_{h} v_{r}, x\right)\right)+(\vec{v}, y)\right. \\
& \left.+\left(\vec{v}, A+P_{b, n}\left(\overrightarrow{\xi_{n}}\right)\right)\right) d w_{\varphi}(x) \\
= & \int_{\mathbb{R}^{r}} f(\vec{u}) \Psi_{r}\left(\lambda,(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \vec{u}\right) d \vec{u} \\
= & \int_{\mathbb{R}^{r}} f\left(\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}} \vec{u}+(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{u}\right) d \vec{u} \\
= & \left(f_{1}\left(\vec{\xi}_{n}, A, \cdot\right) * \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \cdot\right)\right)\left(\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}(\vec{v}, y)\right),
\end{aligned}
$$

where Ψ_{r} is given by (7). We note that if $1 \leq p<\infty$, then by the change of variable theorem

$$
\begin{equation*}
\left\|f_{1}\left(\vec{\xi}_{n}, y+A, \cdot\right)\right\|_{p}^{p}=\left|\Sigma_{\mathcal{P} \perp}^{-\frac{1}{2}}\right|\|f\|_{p}^{p}<\infty . \tag{11}
\end{equation*}
$$

Now, by the Morera's theorem with aids of the Hölder's inequality and the dominated convergence theorem, we have (9) for $\lambda \in \mathbb{C}_{+}$. Since $f_{1}\left(\vec{\xi}_{n}, A, \cdot\right) \in$ $L_{p}\left(\mathbb{R}^{r}\right)$ and $\Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \cdot\right) \in L_{1}\left(\mathbb{R}^{r}\right)$, the final result follows by the change of variable theorem and the Young's inequality [8].

Theorem 3.2. Let $F\left(\in \mathcal{A}^{(p)}\right)$ be given by (8) with $1 \leq p \leq 2$. Then for a nonzero real q, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e $\vec{\xi}_{n} \in \mathbb{R}^{n+1}, T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ exists and it is given by the right-hand side of (9), where λ is replaced by $-i q$. Furthermore $T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{\left(p^{\prime}\right)}$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ if $1<p \leq 2$ and $p^{\prime}=\infty$ if $p=1$.

Proof. Let $T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ be given by the right-hand side of (9) with $\lambda=$ $-i q$, formally. By the change of variable theorem and an application of Lemma 1.1 in [10], we have $T_{q}^{(p)}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{\left(p^{\prime}\right)}$. When $p=1$, the results follow by the Hölder's inequality, the Morera's theorem and the dominated theorem. Suppose that $1<p \leq 2$. By (11), Lemma 2.3, Theorems 2.1 and 3.1, and the change of variable theorem we have

$$
\begin{aligned}
& \int_{C[0, T]} \mid T_{\lambda}\left[F\left|Z_{n}\left(y, \vec{\xi}_{n}\right)-T_{q}^{(p)}\left[F \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)\right|^{p^{\prime}} d w_{\varphi}(y)\right. \\
= & \left.\int_{C[0, T]} \mid f_{1}\left(\vec{\xi}_{n}, A, \cdot\right) * \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \cdot\right)\right)\left(\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}(\vec{v}, y)\right)-\left(f_{1}\left(\vec{\xi}_{n}, A, \cdot\right) * \Psi_{r}(-i q,\right. \\
& \left.\left.\overrightarrow{0}, I_{r}, \cdot\right)\right)\left.\left(\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}(\vec{v}, y)\right)\right|^{p^{\prime}} d w_{\varphi}(y) \\
\leq & \left.\left|\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}}\right| \int_{\mathbb{R}^{r}} \right\rvert\,\left(f_{1}\left(\vec{\xi}_{n}, A, \cdot\right) * \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \cdot\right)\right)(\vec{u})-\left(f _ { 1 } (\vec { \xi } _ { n } , A , \cdot) * \Psi _ { r } \left(-i q, \overrightarrow{0}, I_{r},\right.\right. \\
& \cdot))\left.(\vec{u})\right|^{p^{\prime}} d u,
\end{aligned}
$$

which converges to 0 as λ approaches $-i q$ through \mathbb{C}_{+}by Lemma 1.2 of [10]. Now the proof is completed.

Theorem 3.3. Let $F\left(\in \mathcal{A}^{(p)}\right)$ be given by (8) with $1 \leq p \leq \infty$. For w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$, let $F_{1}\left(y, \vec{\xi}_{n}, \vec{\eta}_{n}\right)=f_{1}\left(\vec{\xi}_{n}+\right.$ $\left.\vec{\eta}_{n}, 2 A, \Sigma_{\mathcal{P} \perp}^{-\frac{1}{2}}(\vec{v}, y)\right)$, where f_{1} is given by (10). Then, for a nonzero real q,

$$
\int_{C[0, T]}\left|T_{\bar{\lambda}}\left[T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)-F_{1}\left(y, \vec{\xi}_{n}, \vec{\eta}_{n}\right)\right|^{p} d w_{\varphi}(y) \rightarrow 0
$$

for $1 \leq p<\infty$, and for $1 \leq p \leq \infty$

$$
T_{\bar{\lambda}}\left[T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \longrightarrow F_{1}\left(y, \vec{\xi}_{n}, \vec{\eta}_{n}\right)
$$

as λ approaches $-i q$ through \mathbb{C}_{+}.
Proof. By Theorem 3.1, $T_{\bar{\lambda}}\left[T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)$ is well-defined. By repeated applications of Theorem 3.1, we have for $\lambda \in \mathbb{C}_{+}, w_{\varphi}$ a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{aligned}
& T_{\bar{\lambda}}\left[T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} f_{1}\left(\vec{\xi}_{n}+\vec{\eta}_{n}, y+2 A, \vec{u}+\vec{z}\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{u}\right) \Psi_{r}\left(\bar{\lambda}, \overrightarrow{0}, I_{r}, \vec{z}\right) d \vec{u} d \vec{z}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{|\lambda|}{2 \pi}\right)^{r} \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} f_{1}\left(\vec{\xi}_{n}+\vec{\eta}_{n}, y+2 A, \vec{u}\right) \exp \left\{-\frac{\lambda}{2}\|\vec{z}\|_{\mathbb{R}}^{2}-\frac{\bar{\lambda}}{2}\|\vec{z}-\vec{u}\|_{\mathbb{R}}^{2}\right\} d \vec{z} d \vec{u} \\
& =\int_{\mathbb{R}^{r}} f_{1}\left(\vec{\xi}_{n}+\vec{\eta}_{n}, y+2 A, \vec{u}\right) \Psi_{r}\left(\frac{|\lambda|^{2}}{2 \operatorname{Re} \lambda}, \overrightarrow{0}, I_{r}, \vec{u}\right) d \vec{u} \\
& =\left(f_{1}\left(\vec{\xi}_{n}+\vec{\eta}_{n}, 2 A, \cdot\right) * \Psi_{r}\left(\frac{|\lambda|^{2}}{2 \operatorname{Re} \lambda}, \overrightarrow{0}, I_{r}, \cdot\right)\right)\left(\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}(\vec{v}, y)\right)
\end{aligned}
$$

Using similar method as used in the proof of Theorem 2.4 in [6], we have the theorem.
4. Generalized conditional convolution products

Let F and G be defined on $C[0, T]$. For $y \in C[0, T]$ and for $\lambda>0$, redefine $\left.F_{Z}^{\lambda}\left(\frac{\cdot}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) G_{Z}^{\lambda}\left(-\frac{\cdot}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right)\right]=F_{Z / \sqrt{2}}^{\lambda}\left(\cdot, \frac{y}{\sqrt{2}}\right) G_{-Z / \sqrt{2}}^{\lambda}\left(\cdot, \frac{y}{\sqrt{2}}\right)$ and suppose that $E\left[F_{Z}^{\lambda}\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) G_{Z}^{\lambda}\left(-\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right)\right]$ exists over the variable x. By Theorem 2.1 and Lemma 2.1 in [11] we have for $y \in C[0, T]$

$$
\begin{align*}
& E\left[\left.F_{Z}^{\lambda}\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) G_{Z}^{\lambda}\left(-\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) \right\rvert\, Z_{n}^{\lambda}\right]\left(\vec{\xi}_{n}\right) \tag{12}\\
= & \int_{C[0, T]} F\left(\frac{1}{\sqrt{2}}\left[y+\lambda^{-\frac{1}{2}} X_{b, n}(x, \cdot)+A+P_{b, n}\left(\vec{\xi}_{n}\right)\right]\right) \\
& \times G\left(\frac{1}{\sqrt{2}}\left[y-\lambda^{-\frac{1}{2}} X_{b, n}(x, \cdot)-A-P_{b, n}\left(\vec{\xi}_{n}\right)\right]\right) d w_{\varphi}(x)
\end{align*}
$$

for $P_{Z_{n}^{\lambda}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$, where A and $X_{b, n}$ are given by (2) and (3), respectively. Let $K_{F_{Z}, G_{Z}}^{\lambda}\left(y, \vec{\xi}_{n}\right)$ be the right-hand side of (12). If, for w_{φ} a.e. $y \in C[0, T]$ and for $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}, K_{F_{Z}, G_{Z}}^{\lambda}\left(y, \vec{\xi}_{n}\right)$ has an analytic extension $J_{\lambda}^{*}\left(F_{Z}, G_{Z}\right)\left(y, \vec{\xi}_{n}\right)$ on \mathbb{C}_{+}, then it is called a generalized conditional convolution product of F and G given Z_{n} with the parameter λ and denoted by

$$
\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=J_{\lambda}^{*}\left(F_{Z}, G_{Z}\right)\left(y, \vec{\xi}_{n}\right)
$$

for a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$. Moreover if, for a nonzero real q, $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ has a limit as λ approaches $-i q$ through \mathbb{C}_{+}, then it is called a generalized conditional convolution product of F and G given Z_{n} with the parameter q and denoted by

$$
\left[\left(F_{Z} * G_{Z}\right)_{q} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=\lim _{\lambda \rightarrow-i q}\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)
$$

Theorem 4.1. Let $F\left(\in \mathcal{A}^{\left(p_{1}\right)}\right), G\left(\in \mathcal{A}^{\left(p_{2}\right)}\right)$ and f, g be related by (8), respectively, where $1 \leq p_{1}, p_{2} \leq \infty$. Furthermore let $\frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1, \frac{1}{p_{2}}+\frac{1}{p_{2}^{\prime}}=1$. Then for $\lambda \in \mathbb{C}_{+}$, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1},\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ exists and is given by

$$
\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)
$$

$$
\begin{aligned}
= & \int_{\mathbb{R}^{r}} f\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)+\vec{u}]\right) g\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)-\vec{u}]\right) \Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}},\right. \\
& \vec{u}) d \vec{u} \\
= & \int_{\mathbb{R}^{r}} f\left(\frac{1}{\sqrt{2}}\left[(\vec{v}, y)+\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}} \vec{u}+\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right]\right) g\left(\frac { 1 } { \sqrt { 2 } } \left[(\vec{v}, y)-\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}} \vec{u}-\right.\right. \\
& \left.\left.\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right]\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{u}\right) d \vec{u} .
\end{aligned}
$$

Moreover for a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$, we have $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(1)}$ if either $p_{2} \leq p_{1}^{\prime}$ or $p_{1} \leq p_{2}^{\prime},\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{\left(p_{2}\right)}$ if $p_{2} \geq p_{1}^{\prime}$ and $\left[\left(F_{Z} *\right.\right.$ $\left.\left.G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{\left(p_{1}\right)}$ if $p_{1} \geq p_{2}^{\prime}$.

Proof. Using similar method as used in the proof of Theorem 3.1, we have for $\lambda>0, w_{\varphi}$ a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$,

$$
\begin{align*}
K_{F_{Z}, G_{Z}}^{\lambda}\left(y, \vec{\xi}_{n}\right) \stackrel{*}{=} & \int_{\mathbb{R}^{r}} f\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)+\vec{u}]\right) g\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)-\vec{u}]\right) \tag{13}\\
& \times \Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \vec{u}\right) d \vec{u} .
\end{align*}
$$

Now, for $\lambda \in \mathbb{C}_{+}$and $\vec{z} \in \mathbb{R}^{r}$, let $\phi(\lambda, \vec{z})$ be given by the right-hand side of (13) with replacing (\vec{v}, y) by \vec{z} and suppose that $p_{2} \leq p_{1}^{\prime}$. Let $\vec{\alpha}=\frac{1}{\sqrt{2}}(\vec{z}+\vec{u})$ and $\vec{\beta}=\frac{1}{\sqrt{2}}(\vec{z}-\vec{u})$. Then we have by the change of variable theorem,

$$
\begin{aligned}
& \int_{\mathbb{R}^{r}}|\phi(\lambda, \vec{z})| d \vec{z} \\
\leq & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}}\left|f(\vec{\alpha}) g(\vec{\beta}) \Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \frac{1}{\sqrt{2}}(\vec{\alpha}-\vec{\beta})\right)\right| d \vec{\beta} d \vec{\alpha} \\
= & \int_{\mathbb{R}^{r}}|f(\vec{\alpha})|\left(|g| *\left|\Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \cdot / \sqrt{2}\right)\right|\right)(\vec{\alpha}) d \vec{\alpha} .
\end{aligned}
$$

Now take a real number q_{1} satisfying $\frac{1}{p_{2}}+\frac{1}{q_{1}}=\frac{1}{p_{1}^{\prime}}+1$. Then we have $1 \leq q_{1} \leq \infty$ for $1 \leq p_{1}, p_{2} \leq \infty$ and $\Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \cdot / \sqrt{2}\right) \in L_{q_{1}}\left(\mathbb{R}^{r}\right)$. Now by the general form of Young's inequality [8] and the Hölder's inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{r}}|\phi(\lambda, \vec{z})| d \vec{z} & \leq\|f\|_{p_{1}}\left\|\left(|g| *\left|\Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \cdot / \sqrt{2}\right)\right|\right)\right\|_{p_{1}^{\prime}} \\
& \leq\|f\|_{p_{1}}\|g\|_{p_{2}}\left\|\Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \cdot / \sqrt{2}\right)\right\|_{q_{1}}<\infty
\end{aligned}
$$

which shows that $\phi(\lambda, \cdot) \in L_{1}\left(\mathbb{R}^{r}\right)$ so that $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(1)}$. Similarly $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(1)}$ if $p_{1} \leq p_{2}^{\prime}$. Applying similar method as used in the proof of Theorem 3.2 in [6] with minor modifications we can establish the remainder part of the proof.

Applying similar method as used in the proof of Theorem 3.3 of [6] with minor modifications we can prove the following theorem.

Theorem 4.2. Let q be a nonzero real number. Then for $\lambda \in \mathbb{C}_{+}$or $\lambda=q$, and $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$, we have the followings:
(1) if $F, G \in \mathcal{A}^{(1)}$, then $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(1)}$,
(2) if $F, G \in \mathcal{A}^{(2)}$, then $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(\infty)}$,
(3) if $F \in \mathcal{A}^{(1)}$ and $G \in \mathcal{A}^{(2)}$, then $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(2)}$,
(4) if $F \in \mathcal{A}^{(1)}$ and $G \in \mathcal{A}^{(1)} \cap \mathcal{A}^{(2)}$, then $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(1)} \cap$ $\mathcal{A}^{(2)}$, and
(5) if $F \in \mathcal{A}^{(1)}$ and $G \in \mathcal{A}^{(\infty)}$, then $\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(\infty)}$.

Theorem 4.3. Let $F, G \in \cup_{1 \leq p \leq \infty} \mathcal{A}^{(p)}$. Then for $\lambda \in \mathbb{C}_{+}$, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$, we have

$$
\begin{aligned}
& T_{\lambda}\left[\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & {\left[T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right] } \\
& \times\left[T_{\lambda}\left[G_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y-a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right] .
\end{aligned}
$$

Proof. We note that $T_{\lambda}\left[\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)$ is well-defined by Theorems 3.1 and 4.1. By those theorems as stated above we have for $\lambda \in \mathbb{C}_{+}, w_{\varphi}$ a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{aligned}
& T_{\lambda}\left[\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} f\left(\frac { 1 } { \sqrt { 2 } } \left[\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{z}+\vec{u})+(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\eta}_{n}\right)\right)+(\vec{v}, A+\right.\right. \\
& \left.\left.\left.P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right]\right) g\left(\frac { 1 } { \sqrt { 2 } } \left[\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{z}-\vec{u})+(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\eta}_{n}\right)\right)-(\vec{v}, A+\right.\right. \\
& \left.\left.\left.P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right]\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{u}\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{z}\right) d \vec{u} d \vec{z} \\
= & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} f\left(\frac{1}{\sqrt{2}}\left[\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{z}+\vec{u})\right]+\frac{1}{\sqrt{2}}(\vec{v}, y)+(\vec{v}, A+(\sqrt{2}-1) A)+\frac{1}{\sqrt{2}}(\vec{v},\right. \\
& \left.\left.P_{b, n}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)\right)\right) g\left(\frac{1}{\sqrt{2}}\left[\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{z}-\vec{u})\right]+\frac{1}{\sqrt{2}}(\vec{v}, y)+(\vec{v}, A)-(\vec{v}, A)+\right. \\
& \left.\frac{1}{\sqrt{2}}\left(\vec{v}, P_{b, n}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)\right)\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{u}\right) \Psi_{r}\left(\lambda, \overrightarrow{0}, I_{r}, \vec{z}\right) d \vec{u} d \vec{z} .
\end{aligned}
$$

Let $\vec{\alpha}=\frac{1}{\sqrt{2}}(\vec{z}+\vec{u})$ and $\vec{\beta}=\frac{1}{\sqrt{2}}(\vec{z}-\vec{u})$. Then we have by the change of variable theorem

$$
\begin{aligned}
& T_{\lambda}\left[\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{r} \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} f\left(\Sigma_{\mathcal{P}^{\prime}}^{\frac{1}{2}} \vec{\alpha}+\left(\vec{v}, \frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a\right)+\left(\vec{v}, A+P_{b, n}\left(\frac{1}{\sqrt{2}}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\times\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right)\right) g\left(\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}} \vec{\beta}+\left(\vec{v}, \frac{1}{\sqrt{2}} y-a\right)+(\vec{v}, A+\right. \\
& \left.\left.P_{b, n}\left(\frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right)\right) \exp \left\{-\frac{\lambda}{4}\left[\|\vec{\alpha}+\vec{\beta}\|_{\mathbb{R}}^{2}+\|\vec{\alpha}-\vec{\beta}\|_{\mathbb{R}}^{2}\right]\right\} d \vec{\alpha} d \vec{\beta} \\
= & {\left[T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right] } \\
& \times\left[T_{\lambda}\left[G_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y-a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right],
\end{aligned}
$$

which completes the proof.
We now have the following relationships between the conditional FourierFeynman transforms and the conditional convolution products from Theorems 3.1, 4.1, 4.2 and 4.3.

Theorem 4.4. Let q be a nonzero real number. Then we have the followings:
(1) if $F, G \in \mathcal{A}^{(1)}$, then we have for w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n}$ $\in \mathbb{R}^{n+1}$

$$
\begin{aligned}
& T_{q}^{(1)}\left[\left[\left(F_{Z} * G_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & {\left[T_{q}^{(1)}\left[F_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right] } \\
& \times\left[T_{q}^{(1)}\left[G_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y-a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right],
\end{aligned}
$$

(2) if $F \in \mathcal{A}^{(1)}$ and $G \in \mathcal{A}^{(2)}$, then we have for w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{aligned}
& T_{q}^{(2)}\left[\left[\left(F_{Z} * G_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & {\left[T_{q}^{(1)}\left[F_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right] } \\
& \times\left[T_{q}^{(2)}\left[G_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y-a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right] .
\end{aligned}
$$

5. Evaluation formulas for bounded cylinder functions

Let ψ be the function on \mathbb{R}^{r} defined by

$$
\begin{equation*}
\psi(\vec{u})=\int_{\mathbb{R}^{r}} \exp \left\{i\langle\vec{u}, \vec{z}\rangle_{\mathbb{R}}\right\} d \rho(\vec{z}) \text { for } \vec{u} \in \mathbb{R}^{r} \tag{14}
\end{equation*}
$$

where ρ is a complex Borel measure of bounded variation over \mathbb{R}^{r}. For w_{φ} a.e. $x \in C[0, T]$, let Φ be given by

$$
\begin{equation*}
\Phi(x)=\psi((\vec{v}, x)) . \tag{15}
\end{equation*}
$$

Applying similar method as used in the proof of Theorem 4.1 in [6] with minor modifications we can prove the following theorem.

Theorem 5.1. Let $1 \leq p \leq \infty$ and Φ be given by (15). Then for $\lambda \in \mathbb{C}_{+}$, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}, T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ exists and it is given by

$$
\begin{align*}
& T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right) \tag{16}\\
= & \int_{\mathbb{R}^{r}} \exp \left\{i\left\langle\vec{z},(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right\rangle_{\mathbb{R}}-\frac{1}{2 \lambda}\left\langle\Sigma_{\mathcal{P}^{\perp}} \vec{z}, \vec{z}\right\rangle_{\mathbb{R}}\right\} d \rho(\vec{z}) .
\end{align*}
$$

For a nonzero real q, w a a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}, T_{q}^{(p)}\left[\Phi_{Z} \mid Z_{n}\right]$ $\left(y, \vec{\xi}_{n}\right)$ exists and it is given by the right-hand side of (16), where λ is replaced by -iq. Furthermore $T_{q}^{(p)}\left[\Phi_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(\infty)}$.
Theorem 5.2. Under the assumptions as given in Theorem 5.1, we have for $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$

$$
\left\|T_{\bar{\lambda}}\left[T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(\cdot, \vec{\eta}_{n}\right)-\psi\left(\left(\vec{v}, \cdot+2 A+P_{b, n}\left(\vec{\xi}_{n}+\overrightarrow{\eta_{n}}\right)\right)\right)\right\|_{p} \rightarrow 0
$$

and for w_{φ} a.e. $y \in C[0, T]$

$$
T_{\bar{\lambda}}\left[T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \longrightarrow \psi\left(\left(\vec{v}, y+2 A+P_{b, n}\left(\vec{\xi}_{n}+\overrightarrow{\eta_{n}}\right)\right)\right)
$$

as λ approaches $-i q$ through \mathbb{C}_{+}.
Proof. By Theorem 5.1, $T_{\bar{\lambda}}\left[T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)$ is well-defined so that we have for $\lambda \in \mathbb{C}_{+}$

$$
\begin{aligned}
& T_{\bar{\lambda}}\left[T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & \int_{\mathbb{R}^{r}} \exp \left\{i\left\langle\vec{z},(\vec{v}, y)+\left(\vec{v}, 2 A+P_{b, n}\left(\vec{\xi}_{n}+\vec{\eta}_{n}\right)\right)\right\rangle_{\mathbb{R}}-\frac{1}{2 \lambda}\left\langle\Sigma_{\mathcal{P}^{\perp}} \vec{z}, \vec{z}\right\rangle_{\mathbb{R}}\right. \\
& \left.-\frac{1}{2 \bar{\lambda}}\left\langle\Sigma_{\mathcal{P}^{\perp}} \vec{z}, \vec{z}\right\rangle_{\mathbb{R}}\right\} d \rho(\vec{z}) .
\end{aligned}
$$

Applying similar method as used in the proof of Theorem 4.2 in [6] with minor modifications we can obtain the remainder part of the proof.

Applying similar method as used in the proof of Theorem 4.3 in [6] with minor modifications we can prove the following theorem.

Theorem 5.3. Let ψ_{1}, ψ_{2} and ρ_{1}, ρ_{2} be related by (14), respectively. Let $\Phi_{1}(x)=\psi_{1}((\vec{v}, x))$ and $\Phi_{2}(x)=\psi_{2}((\vec{v}, x))$ for w_{φ} a.e. $x \in C[0, T]$. Then for $\lambda \in \mathbb{C}_{+}$, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1},\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ exists and it is given by

$$
\begin{aligned}
& {\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right) } \\
= & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} \exp \left\{\frac{i}{\sqrt{2}}\left[\langle(\vec{v}, y), \vec{u}+\vec{w}\rangle_{\mathbb{R}}+\left\langle\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \vec{u}-\vec{w}\right\rangle_{\mathbb{R}}\right]\right. \\
& \left.-\frac{1}{4 \lambda}\left\|\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{u}-\vec{w})\right\|_{\mathbb{R}}^{2}\right\} d \rho_{1}(\vec{u}) d \rho_{2}(\vec{w}) .
\end{aligned}
$$

For a nonzero real $q,\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ is given by the above equation, where λ is replaced by -iq. Furthermore, $\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \in \mathcal{A}^{(\infty)}$.

Theorem 5.4. Let q be a nonzero real number and $1 \leq p \leq \infty$. Furthermore let Φ_{1} and Φ_{2} be as given in Theorem 5.3. Then we have for w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{aligned}
& T_{q}^{(p)}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & {\left[T_{q}^{(p)}\left[\left(\Phi_{1}\right)_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y+(\sqrt{2}-1) a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right)-(\sqrt{2}-1) a\right)\right] } \\
& \times\left[T_{q}^{(p)}\left[\left(\Phi_{2}\right)_{Z} \mid Z_{n}\right]\left(\frac{1}{\sqrt{2}} y-a, \frac{1}{\sqrt{2}}\left(\vec{\eta}_{n}-\vec{\xi}_{n}\right)+a\right)\right] .
\end{aligned}
$$

Proof. By Theorems 5.1 and 5.3 we have for $\lambda \in \mathbb{C}_{+}, w_{\varphi}$ a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n}, \vec{\eta}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{aligned}
& T_{\lambda}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{r}{2}} \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} \exp \left\{\frac { i } { \sqrt { 2 } } \left[\left\langle\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}} \vec{z}+(\vec{v}, y)+\left(\vec{v}, A+P_{b, n}\left(\vec{\eta}_{n}\right)\right), \vec{u}\right.\right.\right. \\
& \left.\left.+\vec{w}\rangle_{\mathbb{R}}+\left\langle\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \vec{u}-\vec{w}\right\rangle_{\mathbb{R}}\right]+\frac{1}{4 q i}\left\|\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{u}-\vec{w})\right\|_{\mathbb{R}}^{2}-\frac{\lambda}{2}\|\vec{z}\|_{\mathbb{R}}^{2}\right\} \\
& d \vec{z} d \rho_{1}(\vec{u}) d \rho_{2}(\vec{w}) \\
= & \int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}} \exp \left\{\frac { i } { \sqrt { 2 } } \left[\left\langle(\vec{v}, y)+2 A+P_{b, n}\left(\vec{\eta}_{n}+\vec{\xi}_{n}\right), \vec{u}\right\rangle_{\mathbb{R}}+\left\langle(\vec{v}, y)+P_{b, n}\left(\vec{\eta}_{n}\right.\right.\right.\right. \\
& \left.\left.\left.\left.-\vec{\xi}_{n}\right), \vec{w}\right\rangle_{\mathbb{R}}\right]+\frac{1}{4 q i}\left\|\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{u}-\vec{w})\right\|_{\mathbb{R}}^{2}-\frac{1}{4 \lambda}\left\|\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{u}+\vec{w})\right\|_{\mathbb{R}}^{2}\right\} d \rho_{1}(\vec{u}) d \rho_{2}(\vec{w}),
\end{aligned}
$$

since $\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}}$ is symmetric. Let $T_{q}^{(p)}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)$ be given by the right-hand side of the last equality, where λ is replaced by $-i q$. The existence of $T_{q}^{(1)}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)$ follows from the dominated convergence theorem. Now let $1<p \leq \infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Then we have by the dominated convergence theorem

$$
\begin{aligned}
& \int_{C[0, T]} \mid T_{\lambda}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right) \\
& -\left.T_{q}^{(p)}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)\right|^{p^{\prime}} d w_{\varphi}(y) \\
\leq & {\left[\int_{\mathbb{R}^{r}} \int_{\mathbb{R}^{r}}\left|\exp \left\{-\frac{1}{4 \lambda}\left\|\Sigma_{\mathcal{P}^{\perp}}^{\frac{1}{2}}(\vec{u}+\vec{w})\right\|_{\mathbb{R}}^{2}\right\}-\exp \left\{\frac{1}{4 q i}\left\|\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}}(\vec{u}+\vec{w})\right\|_{\mathbb{R}}^{2}\right\}\right|\right.} \\
& \left.d\left|\rho_{1}\right|(\vec{u}) d\left|\rho_{2}\right|(\vec{w})\right]^{p^{\prime}} \rightarrow 0
\end{aligned}
$$

as λ approaches $-i q$ through \mathbb{C}_{+}, which shows the existence of $T_{q}^{(p)}\left[\left[\left(\left(\Phi_{1}\right)_{Z} *\right.\right.\right.$ $\left.\left.\left.\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(\cdot, \vec{\xi}_{n}\right) \mid Z_{n}\right]\left(y, \vec{\eta}_{n}\right)$. Now the equality in the theorem follows from Theorems 4.3 and 5.1.

Remark 5.5. (1) Without using Theorem 4.3, we can directly prove Theorem 5.4 with aids of Theorems 5.1 and 5.3.
(2) Comparing Theorem 5.4 with Theorem 4.4, the result in Theorem 5.4 holds for $1 \leq p \leq \infty$ if Φ_{1} and Φ_{2} are given by (15).

6. Change of scale formulas for the transforms and convolutions

For $\lambda \in \mathbb{C}, x \in C[0, T]$ and $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$ let

$$
\begin{align*}
K\left(\lambda, \vec{\xi}_{n}, x\right)= & \left(\frac{\left|\Sigma_{M_{h}}\right|}{\left|\Sigma_{\mathcal{P}^{\perp}}\right|}\right)^{\frac{1}{2}} \exp \left\{\frac{1}{2}\left\|\Sigma_{M_{h}}^{-\frac{1}{2}}(\vec{v}, X(x, \cdot))\right\|_{\mathbb{R}}^{2}\right. \tag{17}\\
& \left.-\frac{\lambda}{2}\left\|\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}\left(\vec{v}, Z(x, \cdot)-A-P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right\|_{\mathbb{R}}^{2}\right\} .
\end{align*}
$$

Furthermore, for a nonzero real q, let $\left\{\lambda_{m}\right\}$ be any sequence in \mathbb{C}_{+}with $\lim _{m \rightarrow \infty} \lambda_{m}=-i q$.

Theorem 6.1. Let $1 \leq p \leq \infty$ and let $F \in \mathcal{A}^{(p)}$. Then for $\lambda \in \mathbb{C}_{+}$, w_{φ} a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{equation*}
T_{\lambda}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=\lambda^{\frac{r}{2}} \int_{C[0, T]} K\left(\lambda, \vec{\xi}_{n}, x\right) F_{Z}(x, y) d w_{\varphi}(x) \tag{18}
\end{equation*}
$$

where K is given by (17). If $p=1$, then

$$
\begin{equation*}
T_{q}^{(1)}\left[F_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=\lim _{m \rightarrow \infty} \lambda_{m}^{\frac{r}{2}} \int_{C[0, T]} K\left(\lambda_{m}, \vec{\xi}_{n}, x\right) F_{Z}(x, y) d w_{\varphi}(x) . \tag{19}
\end{equation*}
$$

Proof. Let F be given by (8). For $\lambda>0$, w_{φ} a.e. $y \in C[0, T]$ and a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$ we have by Lemma 2.3

$$
\begin{aligned}
& \lambda^{\frac{r}{2}} \int_{C[0, T]} K\left(\lambda, \vec{\xi}_{n}, x\right) F_{Z}(x, y) d w_{\varphi}(x) \\
= & \left(\frac{\lambda^{r}\left|\Sigma_{M_{h}}\right|}{\left|\Sigma_{\mathcal{P}^{\perp}}\right|}\right)^{\frac{1}{2}} \int_{C[0, T]} f((\vec{v}, Z(x, \cdot))+(\vec{v}, y)) \exp \left\{\frac{1}{2} \| \Sigma_{M_{h}}^{-\frac{1}{2}}((\vec{v}, Z(x, \cdot))-\right. \\
& \left.(\vec{v}, a))\left\|_{\mathbb{R}^{2}}^{2}-\frac{\lambda}{2}\right\| \Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}\left(\vec{v}, Z(x, \cdot)-A-P_{b, n}\left(\vec{\xi}_{n}\right)\right) \|_{\mathbb{R}}^{2}\right\} d w_{\varphi}(x) \\
= & \left(\frac{\lambda^{r}\left|\Sigma_{M_{h}}\right|}{\left|\Sigma_{\mathcal{P}^{\perp}}\right|}\right)^{\frac{1}{2}} \int_{\mathbb{R}^{r}} f(\vec{u}+(\vec{v}, y)) \Psi_{r}\left(1,(\vec{v}, a), \Sigma_{M_{h}}, \vec{u}\right) \exp \left\{\frac{1}{2} \| \Sigma_{M_{h}}^{-\frac{1}{2}}(\vec{u}-\right. \\
& \left.(\vec{v}, a))\left\|_{\mathbb{R}^{-}}^{2}-\frac{\lambda}{2}\right\| \Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}\left(\vec{u}-\left(\vec{v}, A+P_{b, n}\left(\vec{\xi}_{n}\right)\right)\right) \|_{\mathbb{R}}^{2}\right\} d \vec{u} \\
= & \int_{\mathbb{R}^{r}} f(\vec{u}) \Psi_{r}\left(\lambda,\left(\vec{v}, y+A+P_{b, n}\left(\vec{\xi}_{n}\right)\right), \Sigma_{\mathcal{P}^{\perp}}, \vec{u}\right) d \vec{u} .
\end{aligned}
$$

By the analytic continuation, the dominated convergence theorem and Theorem 3.1 we have the theorem.

Theorem 6.2. Let $F \in \mathcal{A}^{\left(p_{1}\right)}$ and $G \in \mathcal{A}^{\left(p_{2}\right)}$ with $1 \leq p_{1}, p_{2} \leq \infty$. Then for $\lambda \in \mathbb{C}_{+}, w_{\varphi}$ a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$

$$
\begin{align*}
{\left[\left(F_{Z} * G_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)=} & \lambda^{\frac{r}{2}} \int_{C[0, T]} K\left(\lambda, \vec{\xi}_{n}, x\right) F_{Z}\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) \tag{20}\\
& \times G_{Z}\left(-\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) d w_{\varphi}(x),
\end{align*}
$$

where K is given by (17). If $p_{1}=p_{2}=1$, then

$$
\begin{align*}
& {\left[\left(F_{Z} * G_{Z}\right)_{q} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right) } \tag{21}\\
= & \lim _{m \rightarrow \infty} \lambda_{m}^{\frac{r}{2}} \int_{C[0, T]} K\left(\lambda_{m}, \vec{\xi}_{n}, x\right) F_{Z}\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) G_{Z}\left(-\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) d w_{\varphi}(x) .
\end{align*}
$$

Proof. Let F, G and f, g be related by (8), respectively. For $\lambda>0$ and a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}$ we have by Lemma 2.3

$$
\begin{aligned}
& \lambda^{\frac{r}{2}} \int_{C[0, T]} K\left(\lambda, \vec{\xi}_{n}, x\right) F_{Z}\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) G_{Z}\left(-\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) d w_{\varphi}(x) \\
= & \left(\frac{\lambda^{r}\left|\Sigma_{M_{h}}\right|}{\left|\Sigma_{\mathcal{P}^{\perp}}\right|}\right)^{\frac{1}{2}} \int_{C[0, T]} f\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)+(\vec{v}, Z(x, \cdot))]\right) g\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)-(\vec{v},\right. \\
& Z(x, \cdot))]) \exp \left\{\frac{1}{2}\left\|\Sigma_{M_{h}}^{-\frac{1}{2}}((\vec{v}, Z(x, \cdot))-(\vec{v}, a))\right\|_{\mathbb{R}}^{2}-\frac{\lambda}{2} \| \Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}(\vec{v}, Z(x, \cdot)-A\right. \\
& \left.\left.-P_{b, n}\left(\vec{\xi}_{n}\right)\right) \|_{\mathbb{R}}^{2}\right\} d w_{\varphi}(x) \\
= & \left(\frac{\lambda^{r}\left|\Sigma_{M_{h}}\right|}{\left|\Sigma_{\mathcal{P}^{\perp}}\right|}\right)^{\frac{1}{2}} \int_{\mathbb{R}^{r}} f\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)+\vec{u}]\right) g\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)-\vec{u}]\right) \Psi_{r}(1,(\vec{v}, a), \\
& \left.\Sigma_{M_{h}}, \vec{u}\right) \exp \left\{\frac{1}{2}\left\|\Sigma_{M_{h}}^{-\frac{1}{2}}(\vec{u}-(\vec{v}, a))\right\|_{\mathbb{R}}^{2}-\frac{\lambda}{2}\left\|\Sigma_{\mathcal{P}^{\perp}}^{-\frac{1}{2}}\left(\vec{u}-\left(\vec{v}, A+P_{b, n}\left(\overrightarrow{\xi_{n}}\right)\right)\right)\right\|_{\mathbb{R}}^{2}\right\} \\
& d \vec{u} \\
= & \left.\int_{\mathbb{R}^{r}} f\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)+\vec{u}]\right) g\left(\frac{1}{\sqrt{2}}[(\vec{v}, y)-\vec{u})\right]\right) \Psi_{r}\left(\lambda,\left(\vec{v}, A+P_{b, n}\left(\overrightarrow{\xi_{n}}\right)\right), \Sigma_{\mathcal{P}^{\perp}},\right. \\
& \vec{u}) d \vec{u} .
\end{aligned}
$$

By the analytic continuation, the dominated convergence theorem and Theorem 4.1 we have the theorem.

By Theorems 5.1 and 6.1, and the dominated convergence theorem, we have the following theorem.

Theorem 6.3. Let $1 \leq p \leq \infty$ and let Φ be given by (15). Then, for $\lambda \in \mathbb{C}_{+}$, we a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1}, T_{\lambda}\left[\Phi_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ and $T_{q}^{(p)}\left[\Phi_{Z} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ are given by the right-hand sides of (18) and (19), respectively, with replacing F_{Z} by Φ_{Z}.

By Theorems 5.3 and 6.2, and the dominated convergence theorem, we have the following theorem.

Theorem 6.4. Let the assumptions be as given in Theorem 5.3. Then, for $\lambda \in$ $\mathbb{C}_{+}, w_{\varphi}$ a.e. $y \in C[0, T]$ and $P_{Z_{n}}$ a.e. $\vec{\xi}_{n} \in \mathbb{R}^{n+1},\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{\lambda} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ and $\left[\left(\left(\Phi_{1}\right)_{Z} *\left(\Phi_{2}\right)_{Z}\right)_{q} \mid Z_{n}\right]\left(y, \vec{\xi}_{n}\right)$ are given by the right-hand sides of (20) and (21) with replacing F_{Z} and G_{Z} by $\left(\Phi_{1}\right)_{Z}$ and $\left(\Phi_{2}\right)_{Z}$, respectively.

Remark 6.5. (1) An orthonormal subset $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ of $L_{2}[0, T]$ such that both $\left\{M_{h} v_{1}, \ldots, M_{h} v_{r}\right\}$ and $\left\{\mathcal{P}^{\perp} M_{h} v_{1}, \ldots, \mathcal{P}^{\perp} M_{h} v_{r}\right\}$ are independent sets, exists [7].
(2) Let $\left\{e_{11}, \ldots, e_{1 r}\right\}$ and $\left\{e_{21}, \ldots, e_{2 r}\right\}$ be the orthonormal sets obtained from $\left\{M_{h} v_{1}, \ldots, M_{h} v_{r}\right\}$ and $\left\{\mathcal{P}^{\perp} M_{h} v_{1}, \ldots, \mathcal{P}^{\perp} M_{h} v_{r}\right\}$, respectively, by the Gram-Schmidt orthonormalization process. For $l=1, \ldots, r$ let $M_{h} v_{l}=\sum_{j=1}^{r} \alpha_{l j} e_{1 j}$ and $\mathcal{P}^{\perp} M_{h} v_{l}=\sum_{j=1}^{r} \beta_{l j} e_{2 j}$ be the linear combinations, and let $B_{1}=\left[\alpha_{l j}\right]_{r \times r}$ and $B_{2}=\left[\beta_{l j}\right]_{r \times r}$ be the coefficient matrices of the combinations, respectively. Then $M_{h}^{\frac{1}{2}}$ and $\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}}$ can be replaced by B_{1} and B_{2}, respectively, in each expression of the theorems.
(3) It does not mean that $B_{1}=\Sigma_{M_{h}}^{\frac{1}{2}}$ and $B_{2}=\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}}$ in (2). They satisfy only the following equations:

$$
B_{1} B_{1}^{T}=\Sigma_{M_{h}}=\left(\Sigma_{M_{h}}^{\frac{1}{2}}\right)^{2} \text { and } B_{2} B_{2}^{T}=\Sigma_{\mathcal{P}^{\perp}}=\left(\Sigma_{\mathcal{P} \perp}^{\frac{1}{2}}\right)^{2}
$$

Remark 6.6. (1) Letting $\lambda=\gamma^{-2}$ in the theorems of this section, where $\gamma>0$, we have change of scale formulas for $E\left[F_{Z}\left(\gamma^{\prime}, y\right) \mid Z_{n}(\gamma \cdot)\right]$ and $E\left[\left.F_{Z}\left(\frac{\gamma \cdot}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) G_{Z}\left(-\frac{\gamma \cdot}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right) \right\rvert\, Z_{n}\left(\gamma^{\circ}\right)\right]$ for $y \in C[0, T]$.
(2) If $y=0$, then we can obtain the change of scale formulas with Z_{n+1} in [5].
(3) If $a=0$ and $y=0$, then we can obtain the results in [7] with cylinder functions.
(4) If $a=0$ and $h=1$ a.e., then we can obtain the results in [6].
(5) If $n=1$ and $\varphi=\delta_{0}$ which is the Dirac measure concentrated at 0 , then we can obtain the results in [3].
(6) The results of this paper are independent of a particular choice of the initial distribution φ.

Remark 6.7. Almost all results of this paper will be extended with the conditioning function $\left(Z\left(x, t_{0}\right), Z\left(x, t_{1}\right), \ldots, Z\left(x, t_{n-1}\right)\right)$ which does not contain the present position $Z(x, T)$ of the generalized Wiener path $Z(x, \cdot)$.

References

1] R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), 623-627.
[2] R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137.
3] S. J. Chang and D. Skoug, The effect of drift on conditional Fourier-Feynman transforms and conditional convolution products, Int. J. Appl. Math. 2 (2000), no. 4, 505-527.
[4] D. H. Cho, Analogues of conditional Wiener integrals with drift and initial distribution on a function space, Abstr. Appl. Anal. 2014 (2014), Art. ID 916423, 12 pp.
[5] _ Integral transforms on a function space with change of scales using multivariate normal distributions, J. Funct. Spaces 2016 (2016), Art. ID 9235960, 9 pp.
[6] D. H. Cho, S. B. Park, and M. Go, A present position-dependent conditional FourierFeynman transform and convolution product over continuous paths, Int. J. Math. Anal. (Ruse) 9 (2015), no. 48, 2387-2406.
[7] D. H. Cho and I. Yoo, Change of scale formulas for a generalized conditional Wiener integral, Bull. Korean Math. Soc. 53 (2016), no. 5, 1531-1548.
[8] G. B. Folland, Real Analysis, John Wiley \& Sons, New York-Chichester-Brisbane, 1984.
[9] M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819.
[10] G. W. Johnson and D. Skoug, The Cameron-Storvick function space integral: an $\mathcal{L}\left(L_{p}, L_{p^{\prime}}\right)$ theory, Nagoya Math. J. 60 (1976), 93-137.
[11] B. S. Kim and D. H. Cho, Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths, Czechoslovak Math. J. (2015), submitted.
[12] R. G. Laha and V. K. Rohatgi, Probability Theory, John Wiley \& Sons, New York-Chichester-Brisbane, 1979.

Dong Hyun Cho
Department of Mathematics
Kyonggi University
Suwon 16227, Korea
E-mail address: j94385@kyonggi.ac.kr

[^0]: Received March 31, 2016.
 2010 Mathematics Subject Classification. Primary 28C20; Secondary 60H05, 60G15.
 Key words and phrases. analogue of Wiener space, analytic conditional Fourier-Feynman transform, change of scale formula, conditional convolution product, Wiener space.

 This work was supported by Kyonggi University Research Grant 2015.

