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A CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND

CONDITIONAL CONVOLUTION PRODUCT WITH CHANGE

OF SCALES ON A FUNCTION SPACE I

Dong Hyun Cho

Abstract. Using a simple formula for conditional expectations over an
analogue of Wiener space, we calculate a generalized analytic conditional
Fourier-Feynman transform and convolution product of generalized cylin-
der functions which play important roles in Feynman integration theories
and quantum mechanics. We then investigate their relationships, that
is, the conditional Fourier-Feynman transform of the convolution prod-
uct can be expressed in terms of the product of the conditional Fourier-
Feynman transforms of each function. Finally we establish change of scale
formulas for the generalized analytic conditional Fourier-Feynman trans-
form and the conditional convolution product. In this evaluation formulas
and change of scale formulas we use multivariate normal distributions so
that the orthonormalization process of projection vectors which are es-
sential to establish the conditional expectations, can be removed in the
existing conditional Fourier-Feynman transforms, conditional convolution
products and change of scale formulas.

1. Introduction

Let C0[0, T ] denote the Wiener space, that is, the space of real-valued con-
tinuous functions x on the closed interval [0, T ] with x(0) = 0. On the space
C0[0, T ], the analytic conditional Fourier-Feynman transform and conditional
convolution product are introduced by Chang and Skoug [3]. In that paper they
also investigated the effects that drift has on the conditional Fourier-Feynman
transform, the conditional convolution product, and various relationships that
occur between them. Im and Ryu [9] introduced an analogue of Wiener space
C[0, T ], the space of real-valued continuous functions on [0, T ], which gener-
alizes C0[0, T ]. The author [4] introduced a generalized conditional Wiener
integral with drift on C[0, T ] and then, derived two simple formulas which cal-
culate the conditional expectations in terms of ordinary expectations, that is,
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non-conditional expectations. Using the simple formulas on C[0, T ], the author
and his coauthors [5, 6, 7] established a conditional analytic Fourier-Feynman
transform, a conditional convolution product which has no drift, and change of
scale formulas for conditional Wiener integrals which simplify the evaluations
of the analytic conditional Feynman integrals, because the measure used on
C[0, T ] is not scale-invariant [1, 2].

Let a be in C[0, T ] and let h be of bounded variation with h 6= 0 a.e. on
[0, T ]. Define a stochastic process Z : C[0, T ]× [0, T ] → R by

Z(x, t) =

∫ t

0

h(s)dx(s) + x(0) + a(t)

for x ∈ C[0, T ] and for t ∈ [0, T ], where the integral denotes a generalized
Paley-Wiener-Zygmund stochastic integral. For a partition t0 = 0 < t1 <

· · · < tn = T of [0, T ], define a random vector Zn : C[0, T ] → Rn+1 by

Zn(x) = (Z(x, t0), Z(x, t1), . . . , Z(x, tn)).

Using a simple formula for a generalized conditional Wiener integral on C[0, T ]
with the conditioning function Zn [4], we evaluate a generalized analytic condi-
tional Fourier-Feynman transform and conditional convolution product of the
following generalized cylinder function

FZ(x) = f

(
∫ T

0

v1(s)dZ(x, s), . . . ,

∫ T

0

vr(s)dZ(x, s)

)

,

where f ∈ Lp(R
r) with 1 ≤ p ≤ ∞ and {v1, . . . , vr} is an orthonormal subset

of L2[0, T ]. We then investigate several relationships between the conditional
Fourier-Feynman transforms and the conditional convolution products of the
cylinder functions. In fact we show that the Lp-analytic conditional Fourier-

Feynman transform T
(p)
q [[(FZ ∗GZ)q|Zn](·, ~ξn)|Zn] of the conditional convolu-

tion product for the cylinder functions FZ and GZ , can be expressed by the
formula

T (p)
q [[(FZ ∗GZ)q|Zn](·, ~ξn)|Zn](y, ~ηn)

=

[

T (p)
q [FZ |Zn]

(

1√
2
y + (

√
2− 1)a,

1√
2
(~ηn + ~ξn)− (

√
2− 1)a

)]

×
[

T (p)
q [GZ |Zn]

(

1√
2
y − a,

1√
2
(~ηn − ~ξn) + a

)]

for a nonzero real q, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn, ~ηn ∈ Rn+1, where

PZn
is the probability distribution of Zn on the Borel class of Rn+1. Thus

the analytic conditional Fourier-Feynman transform of the conditional con-
volution product for the cylinder functions, can be interpreted as the prod-
uct of the conditional analytic Fourier-Feynman transforms of each function.
Finally we establish various change of scale formulas for the analytic condi-
tional Fourier-Feynman transforms and the conditional convolution products.
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In this evaluation formulas and change of scale formulas we use multivari-
ate normal distributions so that Gram-Schmidt orthonormalization process of
{P⊥(hv1), . . . ,P⊥(hvr)} can be removed in the existing conditional Fourier-
Feynman transforms, conditional convolution products and change of scale for-
mulas for a suitable orthogonal projection P⊥ on L2[0, T ].

2. An analogue of Wiener space and preliminary results

We begin this section with introducing an analogue of Wiener space which
is our underlying space.

For a positive real T let C[0, T ] denote the space of real-valued contin-
uous functions on the time interval [0, T ] with the supremum norm. For
~t = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn ≤ T let J~t : C[0, T ] → Rn+1 be
the function given by

J~t(x) = (x(t0), x(t1), . . . , x(tn)).

For Bj(j = 0, 1, . . . , n) in the Borel class B(R) of R, the subset J−1
~t

(
∏n

j=0 Bj)

of C[0, T ] is called an interval and let I be the set of all such intervals. For a
probability measure ϕ on B(R), let

mϕ

[

J−1
~t

( n
∏

j=0

Bj

)]

=

[ n
∏

j=1

1

2π(tj − tj−1)

]
1
2
∫

B0

∫

∏
n
j=1 Bj

Wn(~t, ~u, u0)d~udϕ(u0),

where for ~u = (u1, . . . , un)

W (~t, ~u, u0) = exp

{

−1

2

n
∑

j=1

(uj − uj−1)
2

tj − tj−1

}

.

B(C[0, T ]), the Borel σ-algebra of C[0, T ], coincides with the smallest σ-algebra
generated by I and there exists a unique probability measure wϕ on C[0, T ]
such that wϕ(I) = mϕ(I) for all I ∈ I. This measure wϕ is called an analogue
of Wiener measure associated with the probability measure ϕ [9].

Let {ek : k = 1, 2, . . .} be a complete orthonormal subset of L2[0, T ] such
that each ek is of bounded variation. For v ∈ L2[0, T ] and x in C[0, T ] let

(v, x) = lim
n→∞

n
∑

k=1

∫ T

0

〈v, ek〉ek(t)dx(t)

if the limit exists, where 〈·, ·〉 denotes the inner product over L2[0, T ]. (v, x) is
called the Paley-Wiener-Zygmund integral of v according to x.

Let C and C+ denote the sets of complex numbers and complex numbers
with positive real parts, respectively. Let F : C[0, T ] → C be integrable and X
be a random vector on C[0, T ] assuming that the value space of X is a normed
space with the Borel σ-algebra. Then we have the conditional expectation
E[F |X ] of F given X from a well-known probability theory [12]. Furthermore
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there exists a PX integrable complex-valued function ψ on the value space of
X such that

E[F |X ](x) = (ψ ◦X)(x) for wϕ a.e. x ∈ C[0, T ],

where PX is the probability distribution of X . The function ψ is called the
conditional wϕ-integral of F given X and it is also denoted by E[F |X ].

Let 0 = t0 < t1 < · · · < tn = T of a partition of [0, T ], where n is a
fixed nonnegative integer. Let h be of bounded variation with h 6= 0 a.e. on
[0, T ]. Let a be absolutely continuous on [0, T ] and define stochastic processes
X,Z : C[0, T ]× [0, T ] → R by

X(x, t) = (hχ[0,t], x) and Z(x, t) = X(x, t) + x(0) + a(t)

for x ∈ C[0, T ] and for t ∈ [0, T ], where χ denotes an indicator function. Define
a random vector Zn : C[0, T ] → R

n+1 by

Zn(x) = (Z(x, t0), Z(x, t1), . . . , Z(x, tn))

for x ∈ C[0, T ]. For t ∈ [0, T ] let b(t) =
∫ t

0 [h(s)]
2ds and for any function f on

[0, T ] define a polygonal function Pb,n(f) of f by

Pb,n(f)(t) =

n
∑

j=1

[

b(tj)− b(t)

b(tj)− b(tj−1)
f(tj−1) +

b(t)− b(tj−1)

b(tj)− b(tj−1)
f(tj)

]

(1)

× χ(tj−1,tj ](t) + f(0)χ{0}(t)

for t ∈ [0, T ]. For ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1 define a polygonal function

Pb,n(~ξn) of ~ξn by (1), where f(tj) is replaced by ξj . For x ∈ C[0, T ] and for
t ∈ [0, T ] let

A(t) = a(t)− Pb,n(a)(t),(2)

Xb,n(x, t) = X(x, t)− Pb,n(X(x, ·))(t)(3)

and

Zb,n(x, t) = Z(x, t)− Pb,n(Z(x, ·))(t).(4)

For a function F : C[0, T ] → C let

FZ(x, y) = F (Z(x, ·) + y) for x, y ∈ C[0, T ].

By Theorem 6 in [4], we have the following theorem.

Theorem 2.1. Let F be a complex valued function on C[0, T ] and FZ be in-

tegrable with respect to x. Then for y ∈ C[0, T ] and for PZn
a.e. ~ξn ∈ Rn+1

E[FZ(·, y)|Zn](~ξn) =

∫

C[0,T ]

F (Zb,n(x, ·) + y + Pb,n(~ξn))dwϕ(x),

where Zb,n is given by (4), PZn
is the probability distribution of Zn on (Rn+1,

B(Rn+1)).
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For λ > 0 and x, y ∈ C[0, T ], let Fλ
Z (x, y) = FZ(λ

− 1
2x, y) and Zλ

n(x) =

Zn(λ
− 1

2 x). Suppose that E[Fλ
Z (·, y)] exists, where the expectation is taken

over the first variable. By Theorem 2.1 and Lemma 2.1 in [11] we have for
y ∈ C[0, T ]

E[Fλ
Z (·, y)|Zλ

n ](
~ξn) =

∫

C[0,T ]

F (λ−
1
2Xb,n(x, ·) + y +A+ Pb,n(~ξn))dwϕ(x)(5)

for PZλ
n
a.e. ~ξn ∈ R

n+1, where A and Xb,n are given by (2) and (3), respectively,

and PZλ
n
is the probability distribution of Zλ

n on (Rn+1,B(Rn+1)).

For an extended real number p with 1 < p ≤ ∞ suppose that p and p′ are
related by 1

p +
1
p′

= 1(possibly p′ = 1 if p = ∞). Let q ∈ R−{0}, Fλ and F be

measurable functions on C[0, T ] for λ ∈ C+ such that

lim
λ→−iq

∫

C[0,T ]

|Fλ(x)− F (x)|p′

dwϕ(x) = 0.(6)

Then we write
l.i.m.
λ→−iq

(wp′

)(Fλ) = F.

Let IλFZ
(y, ~ξn) be the right-hand side of (5). If, for wϕ a.e. y ∈ C[0, T ] and for

PZn
a.e. ~ξn ∈ Rn+1, IλFZ

(y, ~ξn) has an analytic extension J∗
λ(FZ)(y, ~ξn) on C+,

then it is called a generalized analytic conditional Fourier-Wiener transform of
F given Zn with the parameter λ and denoted by

Tλ[FZ |Zn](y, ~ξn) = J∗
λ(FZ)(y, ~ξn)

for ~ξn ∈ Rn+1. Moreover if Tλ[FZ |Zn](y, ~ξn) has a limit as λ approaches to
−iq through C+, then it is called a generalized L1-analytic conditional Fourier-
Feynman transform of F given Zn with the parameter q and denoted by

T (1)
q [FZ |Zn](y, ~ξn) = lim

λ→−iq
Tλ[FZ |Zn](y, ~ξn).

For 1 < p ≤ ∞, define a generalized Lp-analytic conditional Fourier-Feynman

transform T
(p)
q [FZ |Zn] of F given Zn by the formula

T (p)
q [FZ |Zn](·, ~ξn) = l.i.m.

λ→−iq
(wp′

)(Tλ[FZ |Zn](·, ~ξn)) (if exists).

For j = 1, . . . , n let

αj =
1

‖χ(tj−1,tj]h‖
χ(tj−1,tj ]h,

let V be the subspace of L2[0, T ] generated by {α1, . . . , αn} and let V ⊥ be
the orthogonal complement of V . Let P : L2[0, T ] → V be the orthogonal
projection given by

Pv =
n
∑

j=1

〈v, αj〉αj

and let P⊥ : L2[0, T ] → V ⊥ be an orthogonal projection.
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The following lemma is useful to prove the results in the next sections [11].

Lemma 2.2. Let v ∈ L2[0, T ]. Then for wϕ a.e. x ∈ C[0, T ]

(v,X(x, ·)) = (Mhv, x) and (v, Pb,n(X(x, ·))) = (PMhv, x),

where Mh : L2[0, T ] → L2[0, T ] is the multiplication operator defined by

Mhu = hu for u ∈ L2[0, T ].

For simplicity let

(~v, x) = ((v1, x), . . . , (vr, x))

for x ∈ C[0, T ] and for {v1, . . . , vr} ⊆ L2[0, T ]. For ~a, ~u ∈ Rr, λ ∈ C and for
any nonsingular positive r × r matrix Ar on R, let

(7) Ψr(λ,~a,Ar, ~u) =

[

λr

(2π)r|Ar|

]
1
2

exp

{

−λ
2
〈A−1

r (~u− ~a), ~u− ~a〉R
}

,

where 〈·, ·〉R denotes the dot product on Rr. Let Ir be the r×r identity matrix.
The following lemma is useful to prove the results in the next sections [5].

Lemma 2.3. Let {v1, . . . , vr} be a subset of L2[0, T ] such that {Mhv1, . . .,

Mhvr} is an independent set. Then the random vector (~v, Z(x, ·)) has the mul-

tivariate normal distribution [12] with mean vector (~v, a) and covariance ma-

trix ΣMh
= [〈Mhvi,Mhvj〉]r×r. Moreover, for any Borel measurable function

f : Rr+1 → C, we have
∫

C[0,T ]

f(x(0), (~v, Z(x, ·)))dwϕ(x)

∗
=

∫

Rr

∫

R

f(u0, ~u)Ψr(1, (~v, a),ΣMh
, ~u)dϕ(u0)d~u

∗
=

∫

Rr

∫

R

f(u0,Σ
1
2

Mh
~u+ (~v, a))Ψr(1,~0, Ir, ~u)dϕ(u0)d~u,

where
∗
= means that if either side exists, then both sides exist and they are

equal.

Remark 2.4. (1) If ϕ is the Dirac measure δ0 concentrated at 0, then we
can obtain the definition of the conditional Fourier-Feynman transform
on the classical Wiener space [3].

(2) Because the Borel sets of C[0, T ] are always scale-invariant measurable
and we use the Borel class of C[0, T ] on which wϕ is defined, the scale-
invariant measurability is not essential in (6).

3. Generalized conditional Fourier-Feynman transforms

Let 1 ≤ p ≤ ∞, let r be any fixed positive integer, let {v1, v2, . . . , vr}
be an orthonormal subset of L2[0, T ] such that both {Mhv1, . . . ,Mhvr} and
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{P⊥Mhv1, . . . , P⊥Mhvr} are independent sets. Let A(p) be the space of cylin-
der functions F having the form

F (x) = f((~v, x))(8)

for wϕ a.e. x ∈ C[0, T ], where f ∈ Lp(R
r). Without loss of generality we can

take f to be Borel measurable.

Theorem 3.1. Let 1 ≤ p ≤ ∞ and let F (∈ A(p)) be given by (8). Then for

λ ∈ C+

Tλ[FZ |Zn](y, ~ξn)(9)

=

∫

Rr

f(~u)Ψr(λ, (~v, y) + (~v,A+ Pb,n(~ξn)),ΣP⊥ , ~u)d~u

= (f1(~ξn, A, ·) ∗Ψr(λ,~0, Ir, ·))(Σ− 1
2

P⊥
(~v, y))

for wϕ a.e. y∈ C[0, T ] and a.e. ~ξn∈ Rn+1, where ΣP⊥ =[〈P⊥Mhvi,P⊥Mhvj〉],

f1(~ξn, A, ~u) = f(Σ
1
2

P⊥
~u+ (~v,A+ Pb,n(~ξn)))(10)

and A is given by (2). Moreover Tλ[FZ |Zn](·, ~ξn) ∈ A(p).

Proof. For j = 1, . . . , r and wϕ a.e. x ∈ C[0, T ] we have by Lemma 2.2

(vj , Xb,n(x, ·)) = (P⊥Mhvj , x)

so that for λ > 0, y ∈ C[0, T ] and ~ξn ∈ Rn+1 we have by Lemma 2.3

IλFZ
(y, ~ξn) =

∫

C[0,T ]

f(λ−
1
2 ((P⊥Mhv1, x), . . . , (P⊥Mhvr, x)) + (~v, y)

+ (~v,A+ Pb,n(~ξn)))dwϕ(x)

=

∫

Rr

f(~u)Ψr(λ, (~v, y) + (~v,A+ Pb,n(~ξn)),ΣP⊥ , ~u)d~u

=

∫

Rr

f(Σ
1
2

P⊥
~u+ (~v, y) + (~v,A+ Pb,n(~ξn)))Ψr(λ,~0, Ir, ~u)d~u

= (f1(~ξn, A, ·) ∗Ψr(λ,~0, Ir, ·))(Σ− 1
2

P⊥
(~v, y)),

where Ψr is given by (7). We note that if 1 ≤ p < ∞, then by the change of
variable theorem

‖f1(~ξn, y +A, ·)‖pp = |Σ− 1
2

P⊥
| ‖f‖pp <∞.(11)

Now, by the Morera’s theorem with aids of the Hölder’s inequality and the

dominated convergence theorem, we have (9) for λ ∈ C+. Since f1(~ξn, A, ·) ∈
Lp(R

r) and Ψr(λ,~0, Ir, ·) ∈ L1(R
r), the final result follows by the change of

variable theorem and the Young’s inequality [8]. �
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Theorem 3.2. Let F (∈ A(p)) be given by (8) with 1 ≤ p ≤ 2. Then for a

nonzero real q, wϕ a.e. y ∈ C[0, T ] and PZn
a.e ~ξn ∈ Rn+1, T

(p)
q [FZ |Zn](y, ~ξn)

exists and it is given by the right-hand side of (9), where λ is replaced by −iq.
Furthermore T

(p)
q [FZ |Zn](·, ~ξn) ∈ A(p′), where 1

p + 1
p′

= 1 if 1 < p ≤ 2 and

p′ = ∞ if p = 1.

Proof. Let T
(p)
q [FZ |Zn](y, ~ξn) be given by the right-hand side of (9) with λ =

−iq, formally. By the change of variable theorem and an application of Lemma

1.1 in [10], we have T
(p)
q [FZ |Zn](·, ~ξn) ∈ A(p′). When p = 1, the results follow

by the Hölder’s inequality, the Morera’s theorem and the dominated theorem.
Suppose that 1 < p ≤ 2. By (11), Lemma 2.3, Theorems 2.1 and 3.1, and the
change of variable theorem we have

∫

C[0,T ]

|Tλ[F |Zn(y, ~ξn)− T (p)
q [F |Zn](y, ~ξn)|p

′

dwϕ(y)

=

∫

C[0,T ]

|f1(~ξn, A, ·) ∗Ψr(λ,~0, Ir , ·))(Σ− 1
2

P⊥
(~v, y))− (f1(~ξn, A, ·) ∗Ψr(−iq,

~0, Ir, ·))(Σ− 1
2

P⊥
(~v, y))|p′

dwϕ(y)

≤ |Σ
1
2

P⊥
|
∫

Rr

|(f1(~ξn, A, ·) ∗Ψr(λ,~0, Ir, ·))(~u)− (f1(~ξn, A, ·) ∗Ψr(−iq,~0, Ir ,

·))(~u)|p′

du,

which converges to 0 as λ approaches −iq through C+ by Lemma 1.2 of [10].
Now the proof is completed. �

Theorem 3.3. Let F (∈ A(p)) be given by (8) with 1 ≤ p ≤ ∞. For wϕ

a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn, ~ηn ∈ Rn+1, let F1(y, ~ξn, ~ηn) = f1(~ξn +

~ηn, 2A,Σ
− 1

2

P⊥
(~v, y)), where f1 is given by (10). Then, for a nonzero real q,

∫

C[0,T ]

|Tλ̄[Tλ[FZ |Zn](·, ~ξn)|Zn](y, ~ηn)− F1(y, ~ξn, ~ηn)|pdwϕ(y) → 0

for 1 ≤ p <∞, and for 1 ≤ p ≤ ∞

Tλ̄[Tλ[FZ |Zn](·, ~ξn)|Zn](y, ~ηn) −→ F1(y, ~ξn, ~ηn)

as λ approaches −iq through C+.

Proof. By Theorem 3.1, Tλ̄[Tλ[FZ |Zn](·, ~ξn)|Zn](y, ~ηn) is well-defined. By re-
peated applications of Theorem 3.1, we have for λ ∈ C+, wϕ a.e. y ∈ C[0, T ]

and PZn
a.e. ~ξn, ~ηn ∈ Rn+1

Tλ̄[Tλ[FZ |Zn](·, ~ξn)|Zn](y, ~ηn)

=

∫

Rr

∫

Rr

f1(~ξn + ~ηn, y + 2A, ~u+ ~z)Ψr(λ,~0, Ir , ~u)Ψr(λ̄,~0, Ir, ~z)d~ud~z
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=

( |λ|
2π

)r ∫

Rr

∫

Rr

f1(~ξn + ~ηn, y + 2A, ~u) exp

{

−λ
2
‖~z‖2

R
− λ̄

2
‖~z − ~u‖2

R

}

d~zd~u

=

∫

Rr

f1(~ξn + ~ηn, y + 2A, ~u)Ψr

( |λ|2
2Reλ

,~0, Ir , ~u

)

d~u

=

(

f1(~ξn + ~ηn, 2A, ·) ∗Ψr

( |λ|2
2Reλ

,~0, Ir, ·
))

(Σ
− 1

2

P⊥
(~v, y)).

Using similar method as used in the proof of Theorem 2.4 in [6], we have the
theorem. �

4. Generalized conditional convolution products

Let F and G be defined on C[0, T ]. For y ∈ C[0, T ] and for λ > 0, re-
define Fλ

Z (
·√
2
, y√

2
)Gλ

Z( − ·√
2
, y√

2
)] = Fλ

Z/
√
2
(·, y√

2
)Gλ

−Z/
√
2
(·, y√

2
) and suppose

that E[Fλ
Z (

x√
2
, y√

2
)Gλ

Z(− x√
2
, y√

2
)] exists over the variable x. By Theorem 2.1

and Lemma 2.1 in [11] we have for y ∈ C[0, T ]

E

[

Fλ
Z

(

x√
2
,
y√
2

)

Gλ
Z

(

− x√
2
,
y√
2

)∣

∣

∣

∣

Zλ
n

]

(~ξn)(12)

=

∫

C[0,T ]

F

(

1√
2
[y + λ−

1
2Xb,n(x, ·) +A+ Pb,n(~ξn)]

)

×G

(

1√
2
[y − λ−

1
2Xb,n(x, ·)−A− Pb,n(~ξn)]

)

dwϕ(x)

for PZλ
n

a.e. ~ξn ∈ Rn+1, where A and Xb,n are given by (2) and (3), re-

spectively. Let Kλ
FZ ,GZ

(y, ~ξn) be the right-hand side of (12). If, for wϕ

a.e. y ∈ C[0, T ] and for PZn
a.e. ~ξn ∈ Rn+1, Kλ

FZ,GZ
(y, ~ξn) has an analytic

extension J∗
λ(FZ , GZ)(y, ~ξn) on C+, then it is called a generalized conditional

convolution product of F and G given Zn with the parameter λ and denoted
by

[(FZ ∗GZ)λ|Zn](y, ~ξn) = J∗
λ(FZ , GZ)(y, ~ξn)

for a.e. ~ξn ∈ Rn+1. Moreover if, for a nonzero real q, [(FZ ∗ GZ)λ|Zn](y, ~ξn)
has a limit as λ approaches −iq through C+, then it is called a generalized
conditional convolution product of F and G given Zn with the parameter q
and denoted by

[(FZ ∗GZ)q|Zn](y, ~ξn) = lim
λ→−iq

[(FZ ∗GZ)λ|Zn](y, ~ξn).

Theorem 4.1. Let F (∈ A(p1)), G(∈ A(p2)) and f , g be related by (8), respec-
tively, where 1 ≤ p1, p2 ≤ ∞. Furthermore let 1

p1
+ 1

p′

1
= 1, 1

p2
+ 1

p′

2
= 1. Then

for λ ∈ C+, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ Rn+1, [(FZ ∗GZ)λ|Zn](y, ~ξn)

exists and is given by

[(FZ ∗GZ)λ|Zn](y, ~ξn)
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=

∫

Rr

f

(

1√
2
[(~v, y) + ~u]

)

g

(

1√
2
[(~v, y)− ~u]

)

Ψr(λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ ,

~u)d~u

=

∫

Rr

f

(

1√
2
[(~v, y) + Σ

1
2

P⊥
~u+ (~v,A+ Pb,n(~ξn))]

)

g

(

1√
2
[(~v, y)− Σ

1
2

P⊥
~u−

(~v,A+ Pb,n(~ξn))]

)

Ψr(λ,~0, Ir, ~u)d~u.

Moreover for a.e. ~ξn ∈ Rn+1, we have [(FZ ∗ GZ)λ|Zn](·, ~ξn) ∈ A(1) if either

p2 ≤ p′1 or p1 ≤ p′2, [(FZ ∗ GZ)λ|Zn](·, ~ξn) ∈ A(p2) if p2 ≥ p′1 and [(FZ ∗
GZ)λ|Zn](·, ~ξn) ∈ A(p1) if p1 ≥ p′2.

Proof. Using similar method as used in the proof of Theorem 3.1, we have for

λ > 0, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ Rn+1,

Kλ
FZ ,GZ

(y, ~ξn)
∗
=

∫

Rr

f

(

1√
2
[(~v, y) + ~u]

)

g

(

1√
2
[(~v, y)− ~u]

)

(13)

×Ψr(λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ , ~u)d~u.

Now, for λ ∈ C+ and ~z ∈ Rr, let φ(λ, ~z) be given by the right-hand side of (13)
with replacing (~v, y) by ~z and suppose that p2 ≤ p′1. Let ~α = 1√

2
(~z + ~u) and

~β = 1√
2
(~z − ~u). Then we have by the change of variable theorem,
∫

Rr

|φ(λ, ~z)|d~z

≤
∫

Rr

∫

Rr

∣

∣

∣

∣

f(~α)g(~β)Ψr

(

λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ ,
1√
2
(~α− ~β)

)
∣

∣

∣

∣

d~βd~α

=

∫

Rr

|f(~α)|(|g| ∗ |Ψr(λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ , ·/
√
2)|)(~α)d~α.

Now take a real number q1 satisfying
1
p2
+ 1

q1
= 1

p′

1
+1. Then we have 1 ≤ q1 ≤ ∞

for 1 ≤ p1, p2 ≤ ∞ and Ψr(λ, (~v,A+Pb,n(~ξn)),ΣP⊥ , ·/
√
2) ∈ Lq1(R

r). Now by
the general form of Young’s inequality [8] and the Hölder’s inequality

∫

Rr

|φ(λ, ~z)|d~z ≤ ‖f‖p1‖(|g| ∗ |Ψr(λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ , ·/
√
2)|)‖p′

1

≤ ‖f‖p1‖g‖p2‖Ψr(λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ , ·/
√
2)‖q1 <∞,

which shows that φ(λ, ·) ∈ L1(R
r) so that [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(1). Simi-

larly [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(1) if p1 ≤ p′2. Applying similar method as used
in the proof of Theorem 3.2 in [6] with minor modifications we can establish
the remainder part of the proof. �

Applying similar method as used in the proof of Theorem 3.3 of [6] with
minor modifications we can prove the following theorem.
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Theorem 4.2. Let q be a nonzero real number. Then for λ ∈ C+ or λ = q,

and ~ξn ∈ R
n+1, we have the followings:

(1) if F,G ∈ A(1), then [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(1),

(2) if F,G ∈ A(2), then [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(∞),

(3) if F ∈ A(1) and G ∈ A(2), then [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(2),

(4) if F ∈ A(1) and G ∈ A(1) ∩ A(2), then [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(1) ∩
A(2), and

(5) if F ∈ A(1) and G ∈ A(∞), then [(FZ ∗GZ)λ|Zn](·, ~ξn) ∈ A(∞).

Theorem 4.3. Let F,G ∈ ∪1≤p≤∞A(p). Then for λ ∈ C+, wϕ a.e. y ∈ C[0, T ]

and PZn
a.e. ~ξn, ~ηn ∈ R

n+1, we have

Tλ[[(FZ ∗GZ)λ|Zn](·, ~ξn)|Zn](y, ~ηn)

=

[

Tλ[FZ |Zn]

(

1√
2
y + (

√
2− 1)a,

1√
2
(~ηn + ~ξn)− (

√
2− 1)a

)]

×
[

Tλ[GZ |Zn]

(

1√
2
y − a,

1√
2
(~ηn − ~ξn) + a

)]

.

Proof. We note that Tλ[[(FZ ∗GZ)λ|Zn](·, ~ξn)|Zn](y, ~ηn) is well-defined by The-
orems 3.1 and 4.1. By those theorems as stated above we have for λ ∈ C+, wϕ

a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn, ~ηn ∈ Rn+1

Tλ[[(FZ ∗GZ)λ|Zn](·, ~ξn)|Zn](y, ~ηn)

=

∫

Rr

∫

Rr

f

(

1√
2
[Σ

1
2

P⊥
(~z + ~u) + (~v, y) + (~v,A+ Pb,n(~ηn)) + (~v,A+

Pb,n(~ξn))]

)

g

(

1√
2
[Σ

1
2

P⊥
(~z − ~u) + (~v, y) + (~v,A+ Pb,n(~ηn))− (~v,A+

Pb,n(~ξn))]

)

Ψr(λ,~0, Ir , ~u)Ψr(λ,~0, Ir, ~z)d~ud~z

=

∫

Rr

∫

Rr

f

(

1√
2
[Σ

1
2

P⊥
(~z + ~u)] +

1√
2
(~v, y) + (~v,A+ (

√
2− 1)A) +

1√
2
(~v,

Pb,n(~ηn + ~ξn))

)

g

(

1√
2
[Σ

1
2

P⊥
(~z − ~u)] +

1√
2
(~v, y) + (~v,A)− (~v,A)+

1√
2
(~v, Pb,n(~ηn − ~ξn))

)

Ψr(λ,~0, Ir, ~u)Ψr(λ,~0, Ir, ~z)d~ud~z.

Let ~α = 1√
2
(~z+~u) and ~β = 1√

2
(~z−~u). Then we have by the change of variable

theorem

Tλ[[(FZ ∗GZ)λ|Zn](·, ~ξn)|Zn](y, ~ηn)

=

(

λ

2π

)r ∫

Rr

∫

Rr

f

(

Σ
1
2

P⊥
~α+

(

~v,
1√
2
y + (

√
2− 1)a

)

+

(

~v,A+ Pb,n

(

1√
2
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× (~ηn + ~ξn)− (
√
2− 1)a

)))

g

(

Σ
1
2

P⊥

~β +

(

~v,
1√
2
y − a

)

+

(

~v,A+

Pb,n

(

1√
2
(~ηn − ~ξn) + a

)))

exp

{

−λ
4
[‖~α+ ~β‖2

R
+ ‖~α− ~β‖2

R
]

}

d~αd~β

=

[

Tλ[FZ |Zn]

(

1√
2
y + (

√
2− 1)a,

1√
2
(~ηn + ~ξn)− (

√
2− 1)a

)]

×
[

Tλ[GZ |Zn]

(

1√
2
y − a,

1√
2
(~ηn − ~ξn) + a

)]

,

which completes the proof. �

We now have the following relationships between the conditional Fourier-
Feynman transforms and the conditional convolution products from Theorems
3.1, 4.1, 4.2 and 4.3.

Theorem 4.4. Let q be a nonzero real number. Then we have the followings:

(1) if F,G ∈ A(1), then we have for wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn, ~ηn

∈ Rn+1

T (1)
q [[(FZ ∗GZ)q|Zn](·, ~ξn)|Zn](y, ~ηn)

=

[

T (1)
q [FZ |Zn]

(

1√
2
y + (

√
2− 1)a,

1√
2
(~ηn + ~ξn)− (

√
2− 1)a

)]

×
[

T (1)
q [GZ |Zn]

(

1√
2
y − a,

1√
2
(~ηn − ~ξn) + a

)]

,

(2) if F ∈ A(1) and G ∈ A(2), then we have for wϕ a.e. y ∈ C[0, T ] and

PZn
a.e. ~ξn, ~ηn ∈ Rn+1

T (2)
q [[(FZ ∗GZ)q|Zn](·, ~ξn)|Zn](y, ~ηn)

=

[

T (1)
q [FZ |Zn]

(

1√
2
y + (

√
2− 1)a,

1√
2
(~ηn + ~ξn)− (

√
2− 1)a

)]

×
[

T (2)
q [GZ |Zn]

(

1√
2
y − a,

1√
2
(~ηn − ~ξn) + a

)]

.

5. Evaluation formulas for bounded cylinder functions

Let ψ be the function on Rr defined by

ψ(~u) =

∫

Rr

exp{i〈~u, ~z〉R}dρ(~z) for ~u ∈ R
r,(14)

where ρ is a complex Borel measure of bounded variation over Rr. For wϕ

a.e. x ∈ C[0, T ], let Φ be given by

Φ(x) = ψ((~v, x)).(15)

Applying similar method as used in the proof of Theorem 4.1 in [6] with
minor modifications we can prove the following theorem.
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Theorem 5.1. Let 1 ≤ p ≤ ∞ and Φ be given by (15). Then for λ ∈ C+,

wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ Rn+1, Tλ[ΦZ |Zn](y, ~ξn) exists and it is

given by

Tλ[ΦZ |Zn](y, ~ξn)(16)

=

∫

Rr

exp

{

i〈~z, (~v, y) + (~v,A+ Pb,n(~ξn))〉R − 1

2λ
〈ΣP⊥~z, ~z〉R

}

dρ(~z).

For a nonzero real q, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ Rn+1, T

(p)
q [ΦZ |Zn]

(y, ~ξn) exists and it is given by the right-hand side of (16), where λ is replaced

by −iq. Furthermore T
(p)
q [ΦZ |Zn](·, ~ξn) ∈ A(∞).

Theorem 5.2. Under the assumptions as given in Theorem 5.1, we have for

PZn
a.e. ~ξn, ~ηn ∈ R

n+1

‖Tλ̄[Tλ[ΦZ |Zn](·, ~ξn)|Zn](·, ~ηn)− ψ((~v, ·+ 2A+ Pb,n(~ξn + ~ηn)))‖p → 0

and for wϕ a.e. y ∈ C[0, T ]

Tλ̄[Tλ[ΦZ |Zn](·, ~ξn)|Zn](y, ~ηn) −→ ψ((~v, y + 2A+ Pb,n(~ξn + ~ηn)))

as λ approaches −iq through C+.

Proof. By Theorem 5.1, Tλ̄[Tλ[ΦZ |Zn](·, ~ξn)|Zn](y, ~ηn) is well-defined so that
we have for λ ∈ C+

Tλ̄[Tλ[ΦZ |Zn](·, ~ξn)|Zn](y, ~ηn)

=

∫

Rr

exp

{

i〈~z, (~v, y) + (~v, 2A+ Pb,n(~ξn + ~ηn))〉R − 1

2λ
〈ΣP⊥~z, ~z〉R

− 1

2λ̄
〈ΣP⊥~z, ~z〉R

}

dρ(~z).

Applying similar method as used in the proof of Theorem 4.2 in [6] with minor
modifications we can obtain the remainder part of the proof. �

Applying similar method as used in the proof of Theorem 4.3 in [6] with
minor modifications we can prove the following theorem.

Theorem 5.3. Let ψ1, ψ2 and ρ1, ρ2 be related by (14), respectively. Let

Φ1(x) = ψ1((~v, x)) and Φ2(x) = ψ2((~v, x)) for wϕ a.e. x ∈ C[0, T ]. Then for

λ∈C+, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn∈R

n+1, [((Φ1)Z∗(Φ2)Z)λ|Zn](y, ~ξn)
exists and it is given by

[((Φ1)Z ∗ (Φ2)Z)λ|Zn](y, ~ξn)

=

∫

Rr

∫

Rr

exp

{

i√
2
[〈(~v, y), ~u+ ~w〉R + 〈(~v,A+ Pb,n(~ξn)), ~u − ~w〉R]

− 1

4λ
‖Σ

1
2

P⊥
(~u− ~w)‖2

R

}

dρ1(~u)dρ2(~w).
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For a nonzero real q, [((Φ1)Z ∗(Φ2)Z)q|Zn](y, ~ξn) is given by the above equation,

where λ is replaced by −iq. Furthermore, [((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn) ∈ A(∞).

Theorem 5.4. Let q be a nonzero real number and 1 ≤ p ≤ ∞. Furthermore

let Φ1 and Φ2 be as given in Theorem 5.3. Then we have for wϕ a.e. y ∈ C[0, T ]

and PZn
a.e. ~ξn, ~ηn ∈ Rn+1

T (p)
q [[((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn)

=

[

T (p)
q [(Φ1)Z |Zn]

(

1√
2
y + (

√
2− 1)a,

1√
2
(~ηn + ~ξn)− (

√
2− 1)a

)]

×
[

T (p)
q [(Φ2)Z |Zn]

(

1√
2
y − a,

1√
2
(~ηn − ~ξn) + a

)]

.

Proof. By Theorems 5.1 and 5.3 we have for λ ∈ C+, wϕ a.e. y ∈ C[0, T ] and

PZn
a.e. ~ξn, ~ηn ∈ Rn+1

Tλ[[((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn)

=

(

λ

2π

)
r
2
∫

Rr

∫

Rr

∫

Rr

exp

{

i√
2
[〈Σ

1
2

P⊥
~z + (~v, y) + (~v,A+ Pb,n(~ηn)), ~u

+ ~w〉R + 〈(~v,A+ Pb,n(~ξn)), ~u − ~w〉R] +
1

4qi
‖Σ

1
2

P⊥
(~u− ~w)‖2

R
− λ

2
‖~z‖2

R

}

d~zdρ1(~u)dρ2(~w)

=

∫

Rr

∫

Rr

exp

{

i√
2
[〈(~v, y) + 2A+ Pb,n(~ηn + ~ξn), ~u〉R + 〈(~v, y) + Pb,n(~ηn

− ~ξn), ~w〉R] +
1

4qi
‖Σ

1
2

P⊥
(~u− ~w)‖2

R
− 1

4λ
‖Σ

1
2

P⊥
(~u+ ~w)‖2

R

}

dρ1(~u)dρ2(~w),

since Σ
1
2

P⊥
is symmetric. Let T

(p)
q [[((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn) be

given by the right-hand side of the last equality, where λ is replaced by −iq.
The existence of T

(1)
q [[((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn) follows from the

dominated convergence theorem. Now let 1 < p ≤ ∞ and 1
p + 1

p′
= 1. Then

we have by the dominated convergence theorem
∫

C[0,T ]

|Tλ[[((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn)

− T (p)
q [[((Φ1)Z ∗ (Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn)|p

′

dwϕ(y)

≤
[
∫

Rr

∫

Rr

∣

∣

∣

∣

exp

{

− 1

4λ
‖Σ

1
2

P⊥
(~u+ ~w)‖2

R

}

− exp

{

1

4qi
‖Σ

1
2

P⊥
(~u+ ~w)‖2

R

}
∣

∣

∣

∣

d|ρ1|(~u)d|ρ2|(~w)
]p′

→ 0
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as λ approaches −iq through C+, which shows the existence of T
(p)
q [[((Φ1)Z ∗

(Φ2)Z)q|Zn](·, ~ξn)|Zn](y, ~ηn). Now the equality in the theorem follows from
Theorems 4.3 and 5.1. �

Remark 5.5. (1) Without using Theorem 4.3, we can directly prove Theo-
rem 5.4 with aids of Theorems 5.1 and 5.3.

(2) Comparing Theorem 5.4 with Theorem 4.4, the result in Theorem 5.4
holds for 1 ≤ p ≤ ∞ if Φ1 and Φ2 are given by (15).

6. Change of scale formulas for the transforms and convolutions

For λ ∈ C, x ∈ C[0, T ] and ~ξn ∈ Rn+1 let

K(λ, ~ξn, x) =

( |ΣMh
|

|ΣP⊥ |

)
1
2

exp

{

1

2
‖Σ− 1

2

Mh
(~v,X(x, ·))‖2

R
(17)

− λ

2
‖Σ− 1

2

P⊥
(~v, Z(x, ·)−A− Pb,n(~ξn))‖2R

}

.

Furthermore, for a nonzero real q, let {λm} be any sequence in C+ with
limm→∞ λm = −iq.
Theorem 6.1. Let 1 ≤ p ≤ ∞ and let F ∈ A(p). Then for λ ∈ C+, wϕ

a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ Rn+1

(18) Tλ[FZ |Zn](y, ~ξn) = λ
r
2

∫

C[0,T ]

K(λ, ~ξn, x)FZ(x, y)dwϕ(x),

where K is given by (17). If p = 1, then

(19) T (1)
q [FZ |Zn](y, ~ξn) = lim

m→∞
λ

r
2
m

∫

C[0,T ]

K(λm, ~ξn, x)FZ (x, y)dwϕ(x).

Proof. Let F be given by (8). For λ > 0, wϕ a.e. y ∈ C[0, T ] and a.e. ~ξn ∈ Rn+1

we have by Lemma 2.3

λ
r
2

∫

C[0,T ]

K(λ, ~ξn, x)FZ (x, y)dwϕ(x)

=

(

λr|ΣMh
|

|ΣP⊥ |

)
1
2
∫

C[0,T ]

f((~v, Z(x, ·)) + (~v, y)) exp

{

1

2
‖Σ− 1

2

Mh
((~v, Z(x, ·))−

(~v, a))‖2
R
− λ

2
‖Σ− 1

2

P⊥
(~v, Z(x, ·)−A− Pb,n(~ξn))‖2R

}

dwϕ(x)

=

(

λr|ΣMh
|

|ΣP⊥ |

)
1
2
∫

Rr

f(~u+ (~v, y))Ψr(1, (~v, a),ΣMh
, ~u) exp

{

1

2
‖Σ− 1

2

Mh
(~u−

(~v, a))‖2
R
− λ

2
‖Σ− 1

2

P⊥
(~u− (~v,A+ Pb,n(~ξn)))‖2R

}

d~u

=

∫

Rr

f(~u)Ψr(λ, (~v, y +A+ Pb,n(~ξn)),ΣP⊥ , ~u)d~u.
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By the analytic continuation, the dominated convergence theorem and Theorem
3.1 we have the theorem. �

Theorem 6.2. Let F ∈ A(p1) and G ∈ A(p2) with 1 ≤ p1, p2 ≤ ∞. Then for

λ ∈ C+, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ R

n+1

[(FZ ∗GZ)λ|Zn](y, ~ξn) = λ
r
2

∫

C[0,T ]

K(λ, ~ξn, x)FZ

(

x√
2
,
y√
2

)

(20)

×GZ

(

− x√
2
,
y√
2

)

dwϕ(x),

where K is given by (17). If p1 = p2 = 1, then

[(FZ ∗GZ)q|Zn](y, ~ξn)(21)

= lim
m→∞

λ
r
2
m

∫

C[0,T ]

K(λm, ~ξn, x)FZ

(

x√
2
,
y√
2

)

GZ

(

− x√
2
,
y√
2

)

dwϕ(x).

Proof. Let F , G and f , g be related by (8), respectively. For λ > 0 and

a.e. ~ξn ∈ Rn+1 we have by Lemma 2.3

λ
r
2

∫

C[0,T ]

K(λ, ~ξn, x)FZ

(

x√
2
,
y√
2

)

GZ

(

− x√
2
,
y√
2

)

dwϕ(x)

=

(

λr|ΣMh
|

|ΣP⊥ |

)
1
2
∫

C[0,T ]

f

(

1√
2
[(~v, y) + (~v, Z(x, ·))]

)

g

(

1√
2
[(~v, y)− (~v,

Z(x, ·))]
)

exp

{

1

2
‖Σ− 1

2

Mh
((~v, Z(x, ·))− (~v, a))‖2

R
− λ

2
‖Σ− 1

2

P⊥
(~v, Z(x, ·)−A

− Pb,n(~ξn))‖2R
}

dwϕ(x)

=

(

λr|ΣMh
|

|ΣP⊥ |

)
1
2
∫

Rr

f

(

1√
2
[(~v, y) + ~u]

)

g

(

1√
2
[(~v, y)− ~u]

)

Ψr(1, (~v, a),

ΣMh
, ~u) exp

{

1

2
‖Σ− 1

2

Mh
(~u− (~v, a))‖2

R
− λ

2
‖Σ− 1

2

P⊥
(~u− (~v,A+ Pb,n(~ξn)))‖2R

}

d~u

=

∫

Rr

f

(

1√
2
[(~v, y) + ~u]

)

g

(

1√
2
[(~v, y)− ~u)]

)

Ψr(λ, (~v,A+ Pb,n(~ξn)),ΣP⊥ ,

~u)d~u.

By the analytic continuation, the dominated convergence theorem and Theorem
4.1 we have the theorem. �

By Theorems 5.1 and 6.1, and the dominated convergence theorem, we have
the following theorem.
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Theorem 6.3. Let 1 ≤ p ≤ ∞ and let Φ be given by (15). Then, for

λ ∈ C+, wϕ a.e. y ∈ C[0, T ] and PZn
a.e. ~ξn ∈ Rn+1, Tλ[ΦZ |Zn](y, ~ξn) and

T
(p)
q [ΦZ |Zn](y, ~ξn) are given by the right-hand sides of (18) and (19), respec-

tively, with replacing FZ by ΦZ .

By Theorems 5.3 and 6.2, and the dominated convergence theorem, we have
the following theorem.

Theorem 6.4. Let the assumptions be as given in Theorem 5.3. Then, for λ ∈
C+, wϕ a.e. y ∈ C[0, T ] and PZn

a.e. ~ξn ∈ Rn+1, [((Φ1)Z ∗ (Φ2)Z)λ|Zn](y, ~ξn)

and [((Φ1)Z ∗ (Φ2)Z)q|Zn](y, ~ξn) are given by the right-hand sides of (20) and
(21) with replacing FZ and GZ by (Φ1)Z and (Φ2)Z , respectively.

Remark 6.5. (1) An orthonormal subset {v1, v2, . . . , vr} of L2[0, T ] such
that both {Mhv1, . . . ,Mhvr} and {P⊥Mhv1, . . . ,P⊥Mhvr} are inde-
pendent sets, exists [7].

(2) Let {e11, . . . , e1r} and {e21, . . . , e2r} be the orthonormal sets obtained
from {Mhv1, . . . ,Mhvr} and {P⊥Mhv1, . . . ,P⊥Mhvr}, respectively, by
the Gram-Schmidt orthonormalization process. For l = 1, . . . , r let
Mhvl =

∑r
j=1 αlje1j and P⊥Mhvl =

∑r
j=1 βlje2j be the linear com-

binations, and let B1 = [αlj ]r×r and B2 = [βlj ]r×r be the coefficient

matrices of the combinations, respectively. Then M
1
2

h and Σ
1
2

P⊥
can be

replaced by B1 and B2, respectively, in each expression of the theorems.

(3) It does not mean that B1 = Σ
1
2

Mh
and B2 = Σ

1
2

P⊥
in (2). They satisfy

only the following equations:

B1B
T
1 = ΣMh

= (Σ
1
2

Mh
)2 and B2B

T
2 = ΣP⊥ = (Σ

1
2

P⊥
)2.

Remark 6.6. (1) Letting λ = γ−2 in the theorems of this section, where
γ > 0, we have change of scale formulas for E[FZ(γ·, y)|Zn(γ·)] and
E[FZ(

γ·√
2
, y√

2
)GZ(− γ·√

2
, y√

2
)|Zn(γ·)] for y ∈ C[0, T ].

(2) If y = 0, then we can obtain the change of scale formulas with Zn+1 in
[5].

(3) If a = 0 and y = 0, then we can obtain the results in [7] with cylinder
functions.

(4) If a = 0 and h = 1 a.e., then we can obtain the results in [6].
(5) If n = 1 and ϕ = δ0 which is the Dirac measure concentrated at 0, then

we can obtain the results in [3].
(6) The results of this paper are independent of a particular choice of the

initial distribution ϕ.

Remark 6.7. Almost all results of this paper will be extended with the condi-
tioning function (Z(x, t0), Z(x, t1), . . . , Z(x, tn−1)) which does not contain the
present position Z(x, T ) of the generalized Wiener path Z(x, ·).
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