Bull. Korean Math. Soc. 47 (2010), No. 5, pp. 1067-1076 DOI 10.4134/BKMS.2010.47.5.1067

ON COMPLETE SPACELIKE (r-1)-MAXIMAL HYPERSURFACES IN THE ANTI-DE SITTER SPACE $\mathbb{H}^{n+1}_1(-1)$

BIAOGUI YANG

ABSTRACT. In this paper we investigate complete spacelike (r-1)-maximal (i.e., $H_r \equiv 0$) hypersurfaces with two distinct principal curvatures in the anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. We give a characterization of the hyperbolic cylinder.

1. Introduction

Let $\overline{M}_1^{n+1}(c)$ be an (n+1)-dimensional Lorenztian space form with constant sectional curvature c. When c > 0, $M_1^{n+1}(c) = \mathbb{S}_1^{n+1}(c)$ is called (n+1)-dimensional de Sitter space; when c = 0, $M_1^{n+1}(c) = \mathbb{L}^{n+1}$ is called (n+1)dimensional Lorentz-Minkowski space; when c < 0, $M_1^{n+1}(c) = \mathbb{H}_1^{n+1}(c)$ is called (n + 1)-dimensional anti-de Sitter space. A hypersurface M^n is said to be spacelike if the induced metric on M^n from that of the ambient space is Riemannian. The spacelike hypersurfaces in the anti-de Sitter space $\mathbb{H}_1^{n+1}(c)$ are very interesting geometrical objects that were investigated by many geometers.

T. Ishihara [4] proved the following well-known result:

Theorem 1.1 ([4]). Let M^n be an n-dimensional complete maximal spacelike hypersurface in the anti-de Sitter space $\mathbb{H}^{n+1}_1(-1)$, and let S be square of the norm of the second fundamental form. Then,

(1.1) $S \leq n$,

and S = n if and only if $M^n = \mathbb{H}^m(-\frac{n}{m}) \times \mathbb{H}^{n-m}(-\frac{n}{n-m})$ $(1 \le m \le n-1).$

Recently, Cao and Wei [2] studied *n*-dimensional complete maximal spacelike hypersurfaces with two distinct principal curvatures in an (n + 1)-dimensional anti-de Sitter space and gave a characterization of hyperbolic cylinders in the anti-de Sitter space. The author and Liu [10] extended their result and proved the following result:

©2010 The Korean Mathematical Society

Received April 10, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 53B30, 53C42, 53C50.

Key words and phrases. spacelike hypersurface, (r-1)-maximal, anti-de Sitter space, hyperbolic cylinder, generalized maximum principle.

BIAOGUI YANG

Theorem 1.2 ([10]). Let M^n be an n-dimensional $(n \ge 3)$ complete spacelike hypersurface with constant mean curvature H immersed in an anti-de Sitter space $\mathbb{H}_1^{n+1}(c)$. Suppose in addition that M has two distinct principal curvatures λ and μ with the multiplicities (n-1) and 1, respectively, and satisfying $\inf(\lambda - \mu)^2 > 0$, then M^n is the hyperbolic cylinder $\mathbb{H}^{n-1}(c_1) \times \mathbb{H}^1(c_2)$.

In this paper we will investigate complete (r-1)-maximal spacelike hypersurfaces with two principal curvature in the anti-de Sitter spacetime $\mathbb{H}_1^{n+1}(-1)$ and obtain the following main result:

Theorem 1.3. Let M^n be an n-dimensional $(n \ge 3)$ connected, complete (r - 1)-maximal $(1 \le r \le n)$ spacelike hypersurface immersed in anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. Suppose in addition that M^n has two distinct principal curvatures λ and μ with the multiplicities n - 1 and 1, respectively. Then

(i) $\lambda \equiv 0$ and $r \geq 2$. Furthermore, the normalized scalar curvature R = -1 and M^n is both 1-maximal and (n-1)-maximal, or

(ii) S satisfies inequality

(1.2)
$$S \ge \frac{n(r^2 - 2r + n)}{r(n - r)},$$

provided that $\inf(\lambda - \mu)^2 > 0$, and $S = \frac{n(r^2 - 2r + n)}{r(n-r)}$ if and only if M is the hyperbolic cylinder $\mathbb{H}^{n-1}(c_1) \times \mathbb{H}^1(c_2)$.

Corollary 1.4. Let M^n be an n-dimensional $(n \geq 3)$ connected, complete (r-1)-maximal spacelike hypersurface immersed in the anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. Suppose in addition that M has two distinct principal curvatures $\lambda \neq 0$ and μ with the multiplicities n-1 and 1, respectively, satisfying $\inf(\lambda - \mu)^2 > 0$, and

(1.3)
$$S \le \frac{n(r^2 - 2r + n)}{r(n-r)}$$

Then $S = \frac{n(r^2 - 2r + n)}{r(n-r)}$ and M is hyperbolic cylinder $\mathbb{H}^{n-1}(c_1) \times \mathbb{H}^1(c_2)$.

Remark 1.5. When r = 1, since $H = \frac{1}{n}\{(n-1)\lambda + \mu\} \equiv 0$, but $\lambda \neq \mu$, then $\lambda \neq 0$. By Theorem 1.3, we have $S \geq n$. Therefore, using Theorem 1.1, we can obtain Theorem 1.2 in [2] from Theorem 1.3. Hence we extend Cao and Wei's result in [2] from another perspective.

2. Preliminaries

Let M^n be a complete hypersurface in anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. For any $p \in M$, we can choose a local orthonormal frame fields $e_1, \ldots, e_n, e_{n+1}$ in a neighborhood U of M such that e_1, \ldots, e_n are tangential to M^n and e_{n+1} is normal to M^n . Let $\omega_1, \ldots, \omega_n, \omega_{n+1}$ be the corresponding dual frame so that the pseudo-Riemannian metric of $\mathbb{H}_1^{n+1}(-1)$ is given by $d\bar{s}^2 = \sum_i \omega_i^2 - \omega_{n+1}^2$. The smooth connection 1-forms are denoted by ω_{ij} .

A well-known argument shows that the forms ω_{in+1} may be expressed as $\omega_{in+1} = \sum_j h_{ij}\omega_j$, $h_{ij} = h_{ji}$. The square of the length of the second fundamental form $h = \sum h_{ij}\omega_i \otimes \omega_j$ is given by $S = |h|^2 = \sum_{i,j} h_{ij}^2$. Associated to the second fundamental form h of M^n one has n invariants

 S_r , given by the equality

$$\det(tI - A) = \sum_{k=0}^{n} (-1)^k S_k t^{n-k},$$

where A is the shape operator of M^n . If $p \in M$ and $\{e_k\}_{1 \leq k \leq n}$ is a basis of T_pM formed by eigenvectors of the shape operator A_p , with corresponding eigenvalues λ_k 's, one immediately sees that

$$S_r = \sigma_r(\lambda_1, \ldots, \lambda_n),$$

where $\sigma_r \in \mathbb{R}[x_1, \ldots, x_n]$ is the *r*-th elementary symmetric polynomial on the indeterminates x_1, \ldots, x_n . The *r*-th mean curvature of *M* is given by

$$H_r = \frac{1}{\binom{n}{r}} S_r.$$

In particular, when r = 1

$$H_1 = \frac{1}{n} \sum_i \lambda_i = \frac{1}{n} S_1 = H$$

is nothing but the mean curvature of M.

A spacelike hypersurface M^n in Lorentzian space form $\overline{M}_1^{n+1}(c)$ is called (r-1)-maximal if $H_r \equiv 0$. In particular, an 0-maximal spacelike hypersurface is precisely ordinary maximal spacelike one.

The Gauss equations are [7]

(2.1)
$$R_{ijkl} = -(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) - (h_{ik}h_{jl} - h_{il}h_{jk}),$$

(2.2)
$$R_{ij} = -(n-1)\delta_{ij} - nHh_{ij} + \sum_{k} h_{ik}h_{kj},$$

(2.3)
$$n(n-1)(R+1) = -n^2H^2 + S = -n(n-1)H_2,$$

where R is the normalized scalar curvature of M^n .

The Codazzi equation is

$$(2.4) h_{ijk} = h_{ikj},$$

where the covariant derivative of h_{ij} is defined by

(2.5)
$$\sum_{k} h_{ijk}\omega_k = dh_{ij} + \sum_{k} h_{kj}\omega_{ki} + \sum_{k} h_{ik}\omega_{kj}.$$

We also have the Simons formula [3]

(2.6)
$$\frac{1}{2} \triangle S = |\nabla A|^2 + S^2 - n(S - nH^2) - nH \text{tr} A^3 + n \sum_i \lambda_i H_{;ii},$$

BIAOGUI YANG

where $H_{;ii} = e_i(e_i(H))$.

3. Some lemmas

Let M^n be an (r-1)-maximal spacelike hypersurface with two distinct principal curvatures λ and μ (which means that $\lambda(p) \neq \mu(p), \forall p \in M$) in anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. In addition we assume that the multiplicities of the principal curvatures λ and μ are n-1 and 1, respectively, i.e., $\lambda_1 = \cdots = \lambda_{n-1} = \lambda, \lambda_n = \mu$. In the following we shall make use of the following convention on the ranges of indices:

$$1 \le i, j, k, l \le n, \ 1 \le a, b, \ldots \le n-1.$$

Then $\lambda_a = \lambda$, $\lambda_n = \mu$, and

$$S_r = \binom{n}{r} H_r = \sum_{1 \le i_1 < \dots < i_r \le n} \lambda_{i_1} \cdots \lambda_{i_r}$$
$$= \binom{n-1}{r} \lambda^r + \binom{n-1}{r-1} \lambda^{r-1} \mu = 0,$$

hence

(3.1)
$$\lambda^{r-1}[(n-r)\lambda + r\mu] = 0.$$

Letting $U = \{p \in M \mid \lambda(p) \neq 0\}, V = \{q \in M \mid (n-r)\lambda(q) + r\mu(q) = 0\}$. Since these principal curvatures λ and μ are continuous, U is an open set in M, V is a closed set in M. We claim that U = V. In fact, if $p \in U$, i.e., $\lambda(p) \neq 0$, by $(3.1), (n-r)\lambda(p) + r\mu(p) = 0$, and $p \in V$. Hence $U \subseteq V$. On the other hand, if $q \in V$, then $(n-r)\lambda(q) + r\mu(q) = 0$. Since λ and μ are distinct, so $\lambda(q) \neq 0$, otherwise $\lambda(q) = 0 = \mu(q)$. That is $q \in U$, then we have $V \subseteq U$. Therefore U = V. Note that if M is connected, then $U = \emptyset$ or U = M. This is, λ is always 0 or λ is never 0.

(i) If $U = \emptyset$, then $\lambda \equiv 0$. Meanwhile, $r \geq 2$, otherwise, by $H = \frac{1}{n}((n-1)\lambda + \mu) = 0$, it implies that $\lambda = \mu = 0$ which is a contradiction with assumption that λ and μ are distinct. Furthermore, $\binom{n}{2}H_2 = \lambda(\binom{n-1}{2}\lambda + \binom{n-1}{1}\mu) = 0$, i.e., R = -1 by (2.3), and $H_n = \lambda^{n-1}\mu = 0$. Thus M^n is both 1-maximal and (n-1)-maximal.

(ii) If U = M, then $\lambda(p) \neq 0$, $\forall p \in M$. By (3.1), we obtain

$$(3.2) (n-r)\lambda + r\mu = 0.$$

We notice that

$$(3.3) \qquad (n-1)\lambda + \mu = nH,$$

(3.4)
$$(n-1)\lambda^2 + \mu^2 = S,$$

(3.4) $(n-1)\lambda + \mu = 5,$ (3.5) $(n-1)\lambda^3 + \mu^3 = \text{tr}A^3.$

Solving the above system of equations, we have

(3.6)
$$\mu = -\frac{n-r}{r}\lambda,$$

(3.7)
$$\lambda - \mu = \frac{\pi}{r}\lambda,$$

$$(3.8) H = \frac{r-1}{r}\lambda,$$

(3.9)
$$S = \frac{n(r^2 - 2r + n)}{r^2} \lambda^2,$$

(3.10)
$$\operatorname{tr} A^{3} = \frac{n(r^{3} - 3r^{2} + 3rn - n^{2})}{r^{3}}\lambda^{3}.$$

In following we suppose $\lambda(p) \neq 0, \forall p \in M$. Firstly, By making use of similar methods to the ones in [6], we will prove the following result.

Lemma 3.1. let M^n be an n-dimensional $(n \ge 3)$ (r-1)-maximal spacelike hypersurface immersed in the anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. Suppose in addition that M^n has two distinct principal curvatures $\lambda \neq 0$ and μ with the multiplicities (n-1) and 1, respectively. Then

(3.11)
$$\lambda_{;nn} = \frac{r+n}{n} \frac{(\lambda_{;n})^2}{\lambda} - \frac{n}{r}\lambda + \frac{n(n-r)}{r^2}\lambda^3,$$

(3.12)
$$\lambda_{;aa} = -\frac{r}{n} \frac{(\lambda_{;n})^2}{\lambda}.$$

Proof. Using (2.5) we have

(3.13)
$$\Sigma_k h_{ijk} \omega_k = \delta_{ij} d\lambda_i + (\lambda_i - \lambda_j) \omega_{ij}.$$

Thus

$$(3.14) \qquad \begin{aligned} h_{abk} &= 0, \ a \neq b, \\ h_{aab} &= h_{aba} = 0 \Rightarrow \lambda_{;a} = \mu_{;a} = 0 = h_{nna}, \\ h_{aan} &= \lambda_{;n}, \\ h_{nnn} &= \mu_{;n} = -\frac{n-r}{r} \lambda_{;n}. \end{aligned}$$

Letting i = a, j = n in (3.13), we get

(3.15)
$$\omega_{an} = \frac{\lambda_{;n}}{\lambda - \mu} \omega_a = \frac{r}{n} \frac{\lambda_{;n}}{\lambda} \omega_a$$

By the definition of covariant derivative, we have

(3.16)
$$\sum \lambda_{;ij}\omega_j = d\lambda_{;i} + \Sigma_j\lambda_{;j}\omega_{ji} = d\lambda_{;i} + \lambda_{;n}\omega_{ni},$$

(3.17)
$$d\lambda_{;n} = \sum_{j} \lambda_{;nj} \omega_j.$$

From (3.15), we obtain

$$dw_{an} = \frac{r}{n} \left(\frac{1}{\lambda} d\lambda_{;n} \wedge \omega_{a} - \frac{\lambda_{;n}}{\lambda^{2}} d\lambda \wedge \omega_{a} + \frac{\lambda_{;n}}{\lambda} d\omega_{a} \right)$$
$$= \frac{r}{n} \left(\frac{1}{\lambda} \sum_{j} \lambda_{;nj} \omega_{j} \wedge \omega_{a} - \frac{(\lambda_{;n})^{2}}{\lambda^{2}} \omega_{n} \wedge \omega_{a} + \frac{\lambda_{;n}}{\lambda} \sum_{j} \omega_{aj} \wedge \omega_{j} \right)$$
$$= \frac{r}{n} \left(\frac{1}{\lambda} \sum_{b} \lambda_{;nb} \omega_{b} \wedge \omega_{a} + \frac{1}{\lambda} \lambda_{;nn} \omega_{n} \wedge \omega_{a} - \frac{(\lambda_{;n})^{2}}{\lambda^{2}} \omega_{n} \wedge \omega_{a} + \frac{\lambda_{;n}}{\lambda} \sum_{b} \omega_{ab} \wedge \omega_{b} + \frac{\lambda_{;n}}{\lambda} \omega_{an} \wedge \omega_{n} \right).$$

On the other hand, by the structure equations of M, we have

$$dw_{an} = \sum_{j} \omega_{aj} \wedge \omega_{jn} - \frac{1}{2} \sum_{k,l} R_{ankl} \omega_k \wedge \omega_l$$
$$= \frac{r}{n} \frac{\lambda_{;n}}{\lambda} \sum_{b} \omega_{ab} \wedge \omega_b - \frac{1}{2} \sum_{k,l} R_{ankl} \omega_k \wedge \omega_l.$$

By (2.1) we can see

$$\begin{aligned} R_{anbk} &= -(\delta_{ab}\delta_{nk} - \delta_{ak}\delta_{nb}) - \lambda_a\lambda_n(\delta_{ab}\delta_{nk} - \delta_{ak}\delta_{nb}) \\ &= -\delta_{ab}\delta_{nk} - \lambda_a\lambda_n\delta_{ab}\delta_{nk}, \end{aligned}$$

$$R_{anbc} = 0, \ R_{anbn} = -\delta_{ab} - \lambda \mu \delta_{ab}.$$

Noting that M^n is (r-1)-maximal, i.e., $H_r = 0$, but $\lambda \neq 0$. Using (3.6), we have

$$dw_{an} = \frac{r}{n} \frac{\lambda_{;n}}{\lambda} \sum_{b} \omega_{ab} \wedge \omega_{b} + (1 + \lambda \mu) \omega_{a} \wedge \omega_{n}$$
$$= \frac{r}{n} \frac{\lambda_{;n}}{\lambda} \sum_{b} \omega_{ab} \wedge \omega_{b} + \left(1 - \frac{n - r}{r} \lambda^{2}\right) \omega_{a} \wedge \omega_{n}.$$

So we have

$$\lambda_{;nn} = \frac{r+n}{n} \frac{(\lambda_{;n})^2}{\lambda} - \frac{n}{r}\lambda + \frac{n(n-r)}{r^2}\lambda^3.$$

Let i = a in (3.16). Then

$$\sum \lambda_{;aj} \omega_j = d\lambda_{;a} + \sum_j \lambda_{;j} \omega_{ja} = \lambda_{;n} \omega_{na} = -\frac{r}{n} \frac{(\lambda_{;n})^2}{\lambda} \omega_a,$$
$$\lambda_{;aa} = -\frac{r}{n} \frac{(\lambda_{;n})^2}{\lambda}.$$

 \mathbf{SO}

Secondly, based on Lemma 3.1, we have the following key lemma.

Lemma 3.2. let M^n be an n-dimensional $(n \ge 3)$ (r-1)-maximal spacelike hypersurface immersed in anti-de Sitter space $\mathbb{H}_1^{n+1}(-1)$. Suppose in addition that M^n has two distinct principal curvatures $\lambda \neq 0$ and μ with the multiplicities (n-1) and 1, respectively. Then

(3.18)
$$\frac{1}{2} \triangle S = \frac{(3n-2)r^2 - 2rn + n^2 - (r-1)[(n-2)r^2 + n^2]}{4n(r^2 - 2r + n)} \frac{|\nabla S|^2}{S} - \frac{n}{r}S + \frac{n-r}{r^2 - 2r + n}S^2.$$

Proof. By Lemma 3.1, we have (3.19)

$$\begin{split} &\sum_{i} \lambda_{i}(nH)_{;ii} \\ &= \sum_{a} \lambda(nH)_{;aa} + \mu(nH)_{;nn} \\ &= \frac{n(r-1)}{r} \lambda \sum_{a} \lambda_{;aa} - \frac{n(n-r)(r-1)}{r^{2}} \lambda \lambda_{;nn} \\ &= -(n-1)(r-1)(\lambda_{;n})^{2} - \frac{n(n-r)(r-1)}{r^{2}} \left[\frac{r+n}{n} (\lambda_{;n})^{2} - \frac{n}{r} \lambda^{2} + \frac{n(n-r)}{r^{2}} \lambda^{4} \right] \\ &= -\frac{(r-1)[(n-2)r^{2} + n^{2}]}{r^{2}} (\lambda_{;n})^{2} + \frac{n^{2}(n-r)(r-1)}{r^{4}} \lambda^{2} [r-(n-r)\lambda^{2}]. \end{split}$$

By (3.9), we obtain

(3.20)
$$|\nabla S|^2 = \sum_i (S_{i})^2 = \frac{4n^2(r^2 - 2r + n)^2}{r^4} \lambda^2 (\lambda_{i})^2.$$

By (3.14), we have

(3.21)
$$|\nabla A|^2 = \sum_{i,j,k} h_{ijk}^2 = h_{nnn}^2 + 3\sum_i h_{iin}^2 = \frac{(3n-2)r^2 - 2rn + n^2}{r^2} (\lambda_{;n})^2.$$

From (3.8)–(3.10), it is easy to see that

(3.22)
$$\lambda^2 = \frac{r^2}{n(r^2 - 2r + n)}S,$$

(3.23)
$$S - nH^2 = \frac{n-1}{r^2 - 2r + n}S$$

(3.24)
$$nH \operatorname{tr} A^{3} = \frac{(r-1)(r^{3}-3r^{2}+3rn-n^{2})}{(r^{2}-2r+n)^{2}}S^{2}.$$

Substituting (3.22) into (3.20), we obtain

(3.25)
$$(\lambda_{n})^{2} = \frac{r^{2}}{4n(r^{2} - 2r + n)} \frac{|\nabla S|^{2}}{S}.$$

Furthermore

(3.26)
$$|\nabla A|^2 = \frac{(3n-2)r^2 - 2rn + n^2}{4n(r^2 - 2r + n)} \frac{|\nabla S|^2}{S}.$$

Using (3.22) and (3.25), and substituting (3.19), (3.23), (3.24) and (3.26) into (2.6), we can get

$$\begin{split} \frac{1}{2} \triangle S &= |\nabla A|^2 + S^2 - n(S - nH^2) - nH \text{tr} A^3 + \sum_i \lambda_i (nH)_{;ii} \\ &= \frac{(3n - 2)r^2 - 2rn + n^2}{4n(r^2 - 2r + n)} \frac{|\nabla S|^2}{S} + S^2 - \frac{n(n - 1)}{r^2 - 2r + n} S \\ &- \frac{(r - 1)(r^3 - 3r^2 + 3rn - n^2)}{(r^2 - 2r + n)^2} S^2 - \frac{(r - 1)[(n - 2)r^2 + n^2]}{4n(r^2 - 2r + n)} \frac{|\nabla S|^2}{S} \\ &+ \frac{n(n - r)(r - 1)}{r(r^2 - 2r + n)} S - \frac{(n - r)^2(r - 1)}{(r^2 - 2r + n)^2} S^2 \\ &= \frac{(3n - 2)r^2 - 2rn + n^2 - (r - 1)[(n - 2)r^2 + n^2]}{4n(r^2 - 2r + n)} \frac{|\nabla S|^2}{S} \\ &- \frac{n}{r} S + \frac{n - r}{r^2 - 2r + n} S^2. \end{split}$$

We need the following lemma (see [6, 9]).

Lemma 3.3 (Omori [6], Yau [9]). Let M be a complete Riemannian manifold with Ricci curvature bounded from below. Let F be a C^2 function on M which is bounded from below on M. Then there exists a sequence of points p_k in Msuch that

(3.27)
$$\lim_{k \to \infty} F(p_k) = \inf(F), \ \lim_{k \to \infty} |\nabla F(p_k)| = 0, \ \lim_{k \to \infty} \triangle F(p_k) \ge 0.$$

4. Proof of Theorem 1.3

The case for $\lambda \equiv 0$, from what has been discussed in Section 4, we know that M^n is both 1-maximal and (n-1)-maximal.

If $\lambda(p) \neq 0, \forall p \in M$, from Gauss equation (2.1) we have

(4.1)

$$R_{ii} = -(n-1) - nH\lambda_i + \lambda_i^2$$

$$\geq -(n-1) - \frac{n^2 H^2}{4} + \left(\lambda_i - \frac{nH}{2}\right)^2$$

$$\geq -(n-1) - \frac{n^2 H^2}{4}$$

$$= -(n-1) - \frac{n^2 (r-1)^2}{4r^2} \lambda^2.$$

Now we let $W_1 = \{p \in M \mid \lambda^2(p) > \frac{r}{n-r}\}, W_2 = \{p \in M \mid \lambda^2(p) \le \frac{r}{n-r}\}$. Since

(4.2)
$$S = \frac{n(r^2 - 2r + n)}{r^2}\lambda^2 > \frac{r^2 - 2r + n}{n}\inf(\lambda - \mu)^2 > 0$$

if $p \in W_1$, obviously, we have (1.2). There is nothing to prove. Thus we consider on W_2 , i.e., $\lambda^2(p) \leq \frac{r}{n-r}$. From (4.1), we know that the Ricci curvature is bounded from below on W_2 . Consequently, applying Omori and Yau's generalized maximum principle to function S on W_2 , it is possible to find in W_2 a sequence of points p_k , $k \in N$, such that

(4.3)
$$\lim_{k \to \infty} S(p_k) = \inf_{W_2} (S) := \widetilde{\alpha}, \ \lim_{k \to \infty} |\nabla S(p_k)| = 0, \ \lim_{k \to \infty} \Delta S(p_k) \ge 0.$$

Taking limit of both sides of (3.18), we obtain

(4.4)
$$\widetilde{\alpha}\left[\widetilde{\alpha} - \frac{n(r^2 - 2r + n)}{r(n - r)}\right] \ge 0.$$

Using assumption $\inf(\lambda - \mu)^2 > 0$, we have $\tilde{\alpha} \ge \alpha := \inf_M(S) > 0$. Hence

(4.5)
$$\widetilde{\alpha} \ge \frac{n(r^2 - 2r + n)}{r(n - r)}.$$

then we get $\tilde{\alpha} = \frac{n(r^2-2r+n)}{r(n-r)}$ by the definition of W_2 . Hence we prove the inequality (1.2). If $S = \frac{n(r^2-2r+n)}{r(n-r)}$, then λ is constant by (3.9), the same as μ by (3.6). Therefore M is isoparametric with two constant distinct principal curvatures. According to Theorem 1 in [5] or by the congruence theorem of Abe, Koike, and Yamaguchi [1], M is the hyperbolic cylinder $\mathbb{H}^{n-1}(c_1) \times \mathbb{H}^1(c_2)$. This finishes the proof of Theorem 1.3.

Corollary 1.4 is obvious by Theorem 1.3.

Remark 4.1. Wei [8] studied *n*-dimensional compact hypersurfaces with $H_r \equiv 0$ and with two distinct principal curvatures in (n + 1)-dimensional unit sphere $\mathbb{S}^{n+1}(1)$.

Acknowledgements. The author would like to express his gratitude to the referees for their careful reading of the original manuscript and for their comments which improved the paper.

References

- N. Abe, N. Koike, and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), no. 1-2, 123–136.
- [2] L.-F. Cao and G.-X. Wei, A new characterization of hyperbolic cylinder in anti-de Sitter space H₁ⁿ⁺¹(-1), J. Math. Anal. Appl. **329** (2007), no. 1, 408–414.
- [3] S.-Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195–204.
- [4] T. Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J. 35 (1988), no. 3, 345–352.
- [5] Z.-Q. Li and X.-H. Xie, Space-like isoparametric hypersurfaces in Lorentzian space forms, Front. Math. China 1 (2006), no. 1, 130–137.
- [6] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
- [7] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

BIAOGUI YANG

- [8] G.-X. Wei, Rigidity theorem for hypersurfaces in a unit sphere, Monatsh. Math. 149 (2006), no. 4, 343–350.
- [9] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228.
- [10] B.-G. Yang and X.-M. Liu, Complete Spacelike hypersurfaces with constant mean curvature in an anti-de Sitter space, Front. Math. China. 4 (2009), no. 4, 727–737.

School of Mathematics and Computer Sciences Fujian Normal University Fuzhou 350108, P. R. China *E-mail address:* bgyang@163.com