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ON COMPLETE SPACELIKE
(r — 1)-MAXIMAL HYPERSURFACES
IN THE ANTI-DE SITTER SPACE H}?t(—1)

Braogur YANG

ABSTRACT. In this paper we investigate complete spacelike (r — 1)-max-
imal (i.e., Hr = 0) hypersurfaces with two distinct principal curvatures
in the anti-de Sitter space H?+1(—1). We give a characterization of the
hyperbolic cylinder.

1. Introduction

Let M?H(c) be an (n + 1)-dimensional Lorenztian space form with con-
stant sectional curvature c. When ¢ > 0, M7 (c) = ST (¢) is called (n + 1)-
dimensional de Sitter space; when ¢ = 0, M (¢) = L"*! is called (n + 1)-
dimensional Lorentz-Minkowski space; when ¢ < 0, M""'(¢) = H" ' (c) is
called (n + 1)-dimensional anti-de Sitter space. A hypersurface M™ is said to
be spacelike if the induced metric on M™ from that of the ambient space is Rie-
mannian. The spacelike hypersurfaces in the anti-de Sitter space H?™*(c) are
very interesting geometrical objects that were investigated by many geometers.

T. Ishihara [4] proved the following well-known result:

Theorem 1.1 ([4]). Let M™ be an n-dimensional complete mazimal spacelike
hypersurface in the anti-de Sitter space HYT (=1), and let S be square of the
norm of the second fundamental form. Then,

(1.1) S <n,
and S =n if and only if M™ = H™(=2) x H"™™(—-2-) (1<m <n—1).

Recently, Cao and Wei [2] studied n-dimensional complete maximal spacelike
hypersurfaces with two distinct principal curvatures in an (n + 1)-dimensional
anti-de Sitter space and gave a characterization of hyperbolic cylinders in the
anti-de Sitter space. The author and Liu [10] extended their result and proved
the following result:
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Theorem 1.2 ([10]). Let M™ be an n-dimensional (n > 3) complete spacelike
hypersurface with constant mean curvature H immersed in an anti-de Sitter
space H' 1 (c). Suppose in addition that M has two distinct principal curva-
tures X and p with the multiplicities (n — 1) and 1, respectively, and satisfying
inf(A — p)? > 0, then M™ is the hyperbolic cylinder H" ™! (cq) x H'(c2).

In this paper we will investigate complete (r — 1)-maximal spacelike hyper-
surfaces with two principal curvature in the anti-de Sitter spacetime H} ™ (—1)
and obtain the following main result:

Theorem 1.3. Let M™ be an n-dimensional (n > 3) connected, complete (r —
1)-mazimal (1 < r < n) spacelike hypersurface immersed in anti-de Sitter space
H;H'l(—l). Suppose in addition that M™ has two distinct principal curvatures
A and p with the multiplicities n — 1 and 1, respectively. Then

(i) A=0 and r > 2. Furthermore, the normalized scalar curvature R = —1
and M™ is both 1-maximal and (n — 1)-maximal, or

(ii) S satisfies inequality

n(r? —2r +n)

(1.2) S > =)

7

provided that inf(A — p)2 > 0, and S = % if and only if M is the
hyperbolic cylinder H" 1 (c1) x H(ca).

Corollary 1.4. Let M™ be an n-dimensional (n > 3) connected, complete
(r — 1)-mazimal spacelike hypersurface immersed in the anti-de Sitter space
H(—1). Suppose in addition that M has two distinct principal curvatures
A # 0 and p with the multiplicities n — 1 and 1, respectively, satisfying inf(\ —
w)? >0, and

2 _
(13) g <M —2rtn)
r(n—r)
Then § = M=240) 0 M s hyperbolic cylinder H™~*(c1) x H(cp).

r(n—r)

Remark 1.5. When r = 1, since H = 1{(n — 1)A + u} = 0, but A # p, then
A # 0. By Theorem 1.3, we have S > n. Therefore, using Theorem 1.1, we can
obtain Theorem 1.2 in [2] from Theorem 1.3. Hence we extend Cao and Wei’s
result in [2] from another perspective.

2. Preliminaries

Let M™ be a complete hypersurface in anti-de Sitter space H} ™' (—1). For
any p € M, we can choose a local orthonormal frame fields ey, ..., e, e,41 in
a neighborhood U of M such that ey, ..., e, are tangential to M™ and e, 41 is
normal to M™. Let wi,...,wp,wst1 be the corresponding dual frame so that
the pseudo-Riemannian metric of H{™'(—1) is given by ds? = >, w? — w2, ;.
The smooth connection 1-forms are denoted by w;;.
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A well-known argument shows that the forms w;, 1 may be expressed as
Wint+1 = Zj hijw;, hij = hj;. The square of the length of the second funda-
mental form h = 3~ hijw; ® w; is given by S = [h]> =37, - h;.

Associated to the second fundamental form h of M™ one has n invariants
S, given by the equality

n
det(t] — A) =Y (=1)FSpt" ",
k=0
where A is the shape operator of M™. If p € M and {ej}i1<k<n is a basis
of T, M formed by eigenvectors of the shape operator A,, with corresponding
eigenvalues \’s, one immediately sees that

ST = Ur()\h .. .,)\n),

where o, € Rlzy,...,2,] is the r-th elementary symmetric polynomial on the
indeterminates x1,...,x,. The r-th mean curvature of M is given by
1
H, = S

6]

In particular, when r =1
1 1
Hy =— E AN=-5=H
1 n - 7 n 1

is nothing but the mean curvature of M.

A spacelike hypersurface M™ in Lorentzian space form H?H(c) is called
(r — 1)-maximal if H, = 0. In particular, an 0-maximal spacelike hypersurface
is precisely ordinary maximal spacelike one.

The Gauss equations are [7]

(2.1) Rijiw = — (00t — 0udjn) — (hikhj — hahjk),
(2.2) Ry = —(n— 1)51-]- —nHh;; + Z hikhi;,

k
(2.3) nin—1)(R+1)=-—n’H>+ S = —n(n — 1)H,,

where R is the normalized scalar curvature of M™.
The Codazzi equation is

(2.4) hijk = hikj,

where the covariant derivative of h;; is defined by

(2.5) D higrwr = dhij + Y hijwri + Y higwi;-
k k k

We also have the Simons formula [3]

1
(2.6) SO5 = VAP + 8% = n(S — nH?) = nHtrA* +n > X\ Hi,
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where H;ii = €; (el(H))

3. Some lemmas

Let M™ be an (r — 1)-maximal spacelike hypersurface with two distinct
principal curvatures A and g (which means that A(p) # u(p), Vp € M) in
anti-de Sitter space H*(—1). In addition we assume that the multiplicities
of the principal curvatures A and p are n — 1 and 1, respectively, i.e., A\ =
cor = Ap—1 = A, Ay = . In the following we shall make use of the following
convention on the ranges of indices:

1<i,5,k1l<n, 1<a,b,...<n-—1.

Then A\, = A\, A\, = i, and

S, = <:)Hr_ Z Ny Ai

1<ii<-<ir<n
-1 -1
B <n )Ar + (n >Arlu - 0’
r r—1

(3.1) N 7H(n —r)A +rp) = 0.

LettingU ={pe M | A\(p) #0}, V={qe M | (n—r)X(q) +ru(q) = 0}. Since
these principal curvatures A and p are continuous, U is an open set in M, V is
a closed set in M. We claim that U = V. In fact, if p € U, i.e., A\(p) # 0, by
(3.1), (n—r)A(p) + r(p) = 0, and p € V. Hence U C V. On the other hand,
if g € V, then (n —r)A\(q) +ru(q) = 0. Since A and p are distinct, so A(q) # 0,
otherwise A(q) = 0 = p(q). That is ¢ € U, then we have V' C U. Therefore
U = V. Note that if M is connected, then U = () or U = M. This is, X is
always 0 or A is never 0.

(i) If U = 0, then A = 0. Meanwhile, 7 > 2, otherwise, by H = L ((n—1)A+
1) = 0, it implies that A = g = 0 which is a contradiction with assumption
that A and p are distinct. Furthermore, (g)Hg = )\((";1))\4— ("Il)u) =0, ie.,
R = —1 by (2.3), and H, = A" 'y = 0. Thus M" is both 1-maximal and
(n — 1)-maximal.

(ii) If U = M, then A(p) # 0, ¥p € M. By (3.1), we obtain

(3.2) (n—r)A+ru=0.
We notice that

hence

(3.3) (n—1)A+p=nH,
(3.4) (n—DAN +p? =5,
(3.5) (n— 1DA? + p® = trA>.
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Solving the above system of equations, we have

n—r

(3.6) po= - A,
(3.7) A—p o= D,

T

r—1
3.8 H = A
(3.8) M

n(r?—2r+n) o
(3~9) S == T—2>\’

3 9.2 2

(3.10) par = PSSt

3
In following we suppose A(p) # 0, Vp € M. Firstly, By making use of similar
methods to the ones in [6], we will prove the following result.

Lemma 3.1. let M™ be an n-dimensional (n > 3) (r — 1)-mazimal spacelike
hypersurface immersed in the anti-de Sitter space H}T(—1). Suppose in ad-
dition that M™ has two distinct principal curvatures A # 0 and p with the
multiplicities (n — 1) and 1, respectively. Then

r+nAn)? n n(n—r) 4
3.11 Aepy = )"y o) s
( ) ’ n A r + 72
r (An)?
3.12 Mg = —— 2
( ) ’ n oA
Proof. Using (2.5) we have
(313) Ekhijkwk = 5z]d)\7, + ()\Z — )\j)wij.
Thus
habk =0, a 7& ba
haab = haba =0= )\;a = Wa = 0= hnna;
(314) haan = A;'m
n—r
Pnnn = Hin = — >\;n-
Letting ¢ = a, j = n in (3.13), we get
Ao, r A\
(315) Wan = ﬁwa = ETHUJ@.
By the definition of covariant derivative, we have
(316) Z )\ﬂ‘jw]' = d)\ﬂ + Zj/\;j(,dji = d)\’l + )\;nwm,

(3.17) A =Y Ainjw.
J
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From (3.15), we obtain

_ (! Ain Am
dwg, = - ()\d/\;n A wg — 2 dA N\ wg + 3 dwa>
r 1 ()‘;H)Q )\;n
= - XZ)\;njwj ANwg — 2 Wy, A\ wq + i\ Zwaj AN wj
J J

(Ain)®
22

3=

Wn N\ Wq

1 1
= <)\ ; Anpwh A\ Wq + X)\;nnwn A Wq —

A"IL A"IL
+ )\ zb:‘*’abAwb“L )\ wan/\wn> .

On the other hand, by the structure equations of M, we have
1
dwen, = Zj:waj N Wijn — 5 ; Ronkiwr N\ wy

T A 1
= -7 zb:wab/\wb—agfianklwk/\wl-

By (2.1) we can see

Ranvk = —(0abOnk — Sakdnb) — AaAn(dabdnk — Oakdnb)
= _5ab6nk - )\a/\n(sabanka

Ranpe = 0, Ranpn = _6ab - )‘Méab

Noting that M™ is (r — 1)-maximal, i.e., H, = 0, but A # 0. Using (3.6), we
have

Ain
dwen = %T ;Wab ANwp + (1 4+ Ap)wa A wp,

An —
= T}*\Zwab/\wb—i—(l—n 7ﬂ)\2>wa/\wn.
n r
b

So we have
r+n (\n)? O n(n —r)
n A r 72

/\;nn = /\3-

Let i = a in (3.16). Then

r (An)?
A'a' ':d)\'a XN ’a:A'n ha =~~~ —Wa,
Z,JWJ ja T2 A Wj inW n)\w
SO )
r (An)
Agg = —— 5.
; Y O

Secondly, based on Lemma 3.1, we have the following key lemma.
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Lemma 3.2. let M™ be an n-dimensional (n > 3) (r — 1)-maximal spacelike
hypersurface immersed in anti-de Sitter space H’f“(—l). Suppose in addition
that M™ has two distinct principal curvatures A # 0 and p with the multiplici-
ties (n — 1) and 1, respectively. Then

1 (3n —2)r? —2rn+n% — (r — 1)[(n — 2)r2 + n?] |[VS]?
1 —AS =
(3.18) 2 S 4dn(r? — 2r +n) S
g, 7T g2
T S+ 72 — 2r + nS
Proof. By Lemma 3.1, we have
(3.19)

Z A(nH);aa + U(nH);nn

n(r—1) nn—r)(r—1)
— TAZ Mg — ———GF5 " Mnn

= = (n - 1)(7‘ - 1)()‘;n)2_ n(n -~ Z)Q(T -~ 1) s : n()\;n)g_ ﬁ)\2+ 771(”7’2_ T) )\4
- _ (T B 1)[(77/;22)7" +n ]()\,n)Q + n (’I’L _:4)(7‘ — 1))\2[7“ _ (n _ 7“)/\2]

By (3.9), we obtain

(3.20) VS|2 = Z(S;i)2 _ 4n? (r? _427" + n)2)\2()\m)2.

- r
i

By (3.14), we have
2 (3n—2)r% — 2rn +n?

04,k i
From (3.8)—(3.10), it is easy to see that
2 r?
3.22 A= —————
(3:22) n(r2 —2r+n) "’
(3.23) S —nH?2 = el S
’ Cr2—2r+4n"’
— 1) (3 — 32 2
(3.24) nHtra? = CZ DO =37 43 = nf) g
(r2 —2r+n)?
Substituting (3.22) into (3.20), we obtain

r? |VS|?

(3.25) ()\m)Q - dn(r2 —=2r+n) S
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Furthermore
(3n —2)r? —2rn +n? |VS|?
dn(r2 —2r +n) S
Using (3.22) and (3.25), and substituting (3.19), (3.23), (3.24) and (3.26) into
(2.6), we can get

(3.26) VA2 =

%AS = |VAP + 8% = n(S — nH?) — nHtrA* + 3 X;(nH)
_ (3n —2)r2 — 2rn +n? |VS|? L2 n(n—1) g
dn(r2 —2r+n) S r2—2r+n
C(r=1)(® = 3% + 3rn — n2)52 _ (r=D[(n = 2)r* +n* |[VS|?
(r2 —2r +n)? dn(r? —2r +n) S
+n(nfr)(r—1)s_ (n—7r)2(r—1) 4
r(r?2 —2r+n) (r2 = 2r +n)?
(B3n —2)r2 —2rn+n? — (r — 1)[(n — 2)r? + n?] |[VS|?
- dn(r? —2r +n) S
n n—r 9
_;S+r2—2r+n ' U

We need the following lemma (see [6, 9]).

Lemma 3.3 (Omori [6], Yau [9]). Let M be a complete Riemannian manifold
with Ricci curvature bounded from below. Let F be a C? function on M which
is bounded from below on M. Then there exists a sequence of points pi in M
such that

(3.27) klim F(pg) = inf(F), klim [VF(pr)| =0, klim AF(pg) > 0.

4. Proof of Theorem 1.3

The case for A = 0, from what has been discussed in Section 4, we know
that M™ is both 1-maximal and (n — 1)-maximal.
If A(p) # 0, Vp € M, from Gauss equation (2.1) we have

R, = —(n—l)—nH)\i—&-/\?
n?H? nH\”
> —(n—1)— A — 22
> —n-1- " (n - )
n?H?
> —(n—1)—
S
n?(r —1)2 9
(4.1) = —(n—l)—T)\.
Now welet Wy ={pe M | X3(p) > =}, Wo ={pe M | \*(p) < -=}. Since
n(r? —2r +n) r?—2r+mn,

(4.2) S =

2 2
5 A% > - inf(A —p)* >0

r
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if p € Wy, obviously, we have (1.2). There is nothing to prove. Thus we con-
sider on Wa, i.e., A2(p) < ——. From (4.1), we know that the Ricci curvature
is bounded from below on W5. Consequently, applying Omori and Yau’s gen-
eralized maximum principle to function S on Ws, it is possible to find in W5 a

sequence of points pg, k € N, such that
(4.3) klim S(pr) = in[}f(S) =aq, klim |VS(pi)| =0, klim AS(pr) > 0.
g 2 — 00 — 00

Taking limit of both sides of (3.18), we obtain
2
~ |~ —2
(4.4) glag_ri=2r+m)y_ o
r(n—r)

Using assumption inf(\ — )2 > 0, we have & > « := inf;(S) > 0. Hence

(4.5) G M= 2r i)

' - rin—-r)
then we get a = % by the definition of W5. Hence we prove the
inequality (1.2). If S = %, then M\ is constant by (3.9), the same as

u by (3.6). Therefore M is isoparametric with two constant distinct principal
curvatures. According to Theorem 1 in [5] or by the congruence theorem of
Abe, Koike, and Yamaguchi [1], M is the hyperbolic cylinder H"~!(c; ) x H! (cs).
This finishes the proof of Theorem 1.3.

Corollary 1.4 is obvious by Theorem 1.3.

Remark 4.1. Wei [8] studied n-dimensional compact hypersurfaces with H,. = 0
and with two distinct principal curvatures in (n + 1)-dimensional unit sphere
SnL(1).
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