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ON COMPLETE SPACELIKE
(r − 1)-MAXIMAL HYPERSURFACES

IN THE ANTI-DE SITTER SPACE Hn+1
1 (−1)

Biaogui Yang

Abstract. In this paper we investigate complete spacelike (r − 1)-max-
imal (i.e., Hr ≡ 0) hypersurfaces with two distinct principal curvatures

in the anti-de Sitter space Hn+1
1 (−1). We give a characterization of the

hyperbolic cylinder.

1. Introduction

Let M
n+1

1 (c) be an (n + 1)-dimensional Lorenztian space form with con-
stant sectional curvature c. When c > 0, Mn+1

1 (c) = Sn+1
1 (c) is called (n + 1)-

dimensional de Sitter space; when c = 0, Mn+1
1 (c) = Ln+1 is called (n + 1)-

dimensional Lorentz-Minkowski space; when c < 0, Mn+1
1 (c) = Hn+1

1 (c) is
called (n + 1)-dimensional anti-de Sitter space. A hypersurface Mn is said to
be spacelike if the induced metric on Mn from that of the ambient space is Rie-
mannian. The spacelike hypersurfaces in the anti-de Sitter space Hn+1

1 (c) are
very interesting geometrical objects that were investigated by many geometers.

T. Ishihara [4] proved the following well-known result:

Theorem 1.1 ([4]). Let Mn be an n-dimensional complete maximal spacelike
hypersurface in the anti-de Sitter space Hn+1

1 (−1), and let S be square of the
norm of the second fundamental form. Then,

(1.1) S ≤ n,

and S = n if and only if Mn = Hm(− n
m )×Hn−m(− n

n−m ) (1 ≤ m ≤ n− 1).

Recently, Cao and Wei [2] studied n-dimensional complete maximal spacelike
hypersurfaces with two distinct principal curvatures in an (n + 1)-dimensional
anti-de Sitter space and gave a characterization of hyperbolic cylinders in the
anti-de Sitter space. The author and Liu [10] extended their result and proved
the following result:
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Theorem 1.2 ([10]). Let Mn be an n-dimensional (n ≥ 3) complete spacelike
hypersurface with constant mean curvature H immersed in an anti-de Sitter
space Hn+1

1 (c). Suppose in addition that M has two distinct principal curva-
tures λ and µ with the multiplicities (n− 1) and 1, respectively, and satisfying
inf(λ− µ)2 > 0, then Mn is the hyperbolic cylinder Hn−1(c1)×H1(c2).

In this paper we will investigate complete (r − 1)-maximal spacelike hyper-
surfaces with two principal curvature in the anti-de Sitter spacetime Hn+1

1 (−1)
and obtain the following main result:

Theorem 1.3. Let Mn be an n-dimensional (n ≥ 3) connected, complete (r−
1)-maximal (1 ≤ r ≤ n) spacelike hypersurface immersed in anti-de Sitter space
Hn+1

1 (−1). Suppose in addition that Mn has two distinct principal curvatures
λ and µ with the multiplicities n− 1 and 1, respectively. Then

(i) λ ≡ 0 and r ≥ 2. Furthermore, the normalized scalar curvature R = −1
and Mn is both 1-maximal and (n− 1)-maximal, or

(ii) S satisfies inequality

(1.2) S ≥ n(r2 − 2r + n)
r(n− r)

,

provided that inf(λ − µ)2 > 0, and S = n(r2−2r+n)
r(n−r) if and only if M is the

hyperbolic cylinder Hn−1(c1)×H1(c2).

Corollary 1.4. Let Mn be an n-dimensional (n ≥ 3) connected, complete
(r − 1)-maximal spacelike hypersurface immersed in the anti-de Sitter space
Hn+1

1 (−1). Suppose in addition that M has two distinct principal curvatures
λ 6= 0 and µ with the multiplicities n− 1 and 1, respectively, satisfying inf(λ−
µ)2 > 0, and

(1.3) S ≤ n(r2 − 2r + n)
r(n− r)

.

Then S = n(r2−2r+n)
r(n−r) and M is hyperbolic cylinder Hn−1(c1)×H1(c2).

Remark 1.5. When r = 1, since H = 1
n{(n − 1)λ + µ} ≡ 0, but λ 6= µ, then

λ 6= 0. By Theorem 1.3, we have S ≥ n. Therefore, using Theorem 1.1, we can
obtain Theorem 1.2 in [2] from Theorem 1.3. Hence we extend Cao and Wei’s
result in [2] from another perspective.

2. Preliminaries

Let Mn be a complete hypersurface in anti-de Sitter space Hn+1
1 (−1). For

any p ∈ M , we can choose a local orthonormal frame fields e1, . . . , en, en+1 in
a neighborhood U of M such that e1, . . . , en are tangential to Mn and en+1 is
normal to Mn. Let ω1, . . . , ωn, ωn+1 be the corresponding dual frame so that
the pseudo-Riemannian metric of Hn+1

1 (−1) is given by ds2 =
∑

i ω2
i − ω2

n+1.
The smooth connection 1-forms are denoted by ωij .
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A well-known argument shows that the forms ωin+1 may be expressed as
ωin+1 =

∑
j hijωj , hij = hji. The square of the length of the second funda-

mental form h =
∑

hijωi ⊗ ωj is given by S = |h|2 =
∑

i,j h2
ij .

Associated to the second fundamental form h of Mn one has n invariants
Sr, given by the equality

det(tI −A) =
n∑

k=0

(−1)kSktn−k,

where A is the shape operator of Mn. If p ∈ M and {ek}1≤k≤n is a basis
of TpM formed by eigenvectors of the shape operator Ap, with corresponding
eigenvalues λk’s, one immediately sees that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[x1, . . . , xn] is the r-th elementary symmetric polynomial on the
indeterminates x1, . . . , xn. The r-th mean curvature of M is given by

Hr =
1(
n
r

)Sr.

In particular, when r = 1

H1 =
1
n

∑

i

λi =
1
n

S1 = H

is nothing but the mean curvature of M .
A spacelike hypersurface Mn in Lorentzian space form M

n+1

1 (c) is called
(r− 1)-maximal if Hr ≡ 0. In particular, an 0-maximal spacelike hypersurface
is precisely ordinary maximal spacelike one.

The Gauss equations are [7]

(2.1) Rijkl = −(δikδjl − δilδjk)− (hikhjl − hilhjk),

(2.2) Rij = −(n− 1)δij − nHhij +
∑

k

hikhkj ,

(2.3) n(n− 1)(R + 1) = −n2H2 + S = −n(n− 1)H2,

where R is the normalized scalar curvature of Mn.
The Codazzi equation is

(2.4) hijk = hikj ,

where the covariant derivative of hij is defined by

(2.5)
∑

k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj .

We also have the Simons formula [3]

(2.6)
1
2
4S = |∇A|2 + S2 − n(S − nH2)− nHtrA3 + n

∑

i

λiH;ii,
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where H;ii = ei(ei(H)).

3. Some lemmas

Let Mn be an (r − 1)-maximal spacelike hypersurface with two distinct
principal curvatures λ and µ (which means that λ(p) 6= µ(p), ∀p ∈ M) in
anti-de Sitter space Hn+1

1 (−1). In addition we assume that the multiplicities
of the principal curvatures λ and µ are n − 1 and 1, respectively, i.e., λ1 =
· · · = λn−1 = λ, λn = µ. In the following we shall make use of the following
convention on the ranges of indices:

1 ≤ i, j, k, l ≤ n, 1 ≤ a, b, . . . ≤ n− 1.

Then λa = λ, λn = µ, and

Sr =
(

n

r

)
Hr =

∑

1≤i1<···<ir≤n

λi1 · · ·λir

=
(

n− 1
r

)
λr +

(
n− 1
r − 1

)
λr−1µ = 0,

hence

(3.1) λr−1[(n− r)λ + rµ] = 0.

Letting U = {p ∈ M | λ(p) 6= 0}, V = {q ∈ M | (n−r)λ(q)+rµ(q) = 0}. Since
these principal curvatures λ and µ are continuous, U is an open set in M , V is
a closed set in M . We claim that U = V . In fact, if p ∈ U , i.e., λ(p) 6= 0, by
(3.1), (n− r)λ(p) + rµ(p) = 0, and p ∈ V . Hence U ⊆ V . On the other hand,
if q ∈ V , then (n− r)λ(q) + rµ(q) = 0. Since λ and µ are distinct, so λ(q) 6= 0,
otherwise λ(q) = 0 = µ(q). That is q ∈ U , then we have V ⊆ U . Therefore
U = V . Note that if M is connected, then U = ∅ or U = M . This is, λ is
always 0 or λ is never 0.

(i) If U = ∅, then λ ≡ 0. Meanwhile, r ≥ 2, otherwise, by H = 1
n ((n− 1)λ+

µ) = 0, it implies that λ = µ = 0 which is a contradiction with assumption
that λ and µ are distinct. Furthermore,

(
n
2

)
H2 = λ(

(
n−1

2

)
λ +

(
n−1

1

)
µ) = 0, i.e.,

R = −1 by (2.3), and Hn = λn−1µ = 0. Thus Mn is both 1-maximal and
(n− 1)-maximal.

(ii) If U = M , then λ(p) 6= 0, ∀p ∈ M . By (3.1), we obtain

(3.2) (n− r)λ + rµ = 0.

We notice that

(n− 1)λ + µ = nH,(3.3)

(n− 1)λ2 + µ2 = S,(3.4)

(n− 1)λ3 + µ3 = trA3.(3.5)
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Solving the above system of equations, we have

µ = −n− r

r
λ,(3.6)

λ− µ =
n

r
λ,(3.7)

H =
r − 1

r
λ,(3.8)

S =
n(r2 − 2r + n)

r2
λ2,(3.9)

trA3 =
n(r3 − 3r2 + 3rn− n2)

r3
λ3.(3.10)

In following we suppose λ(p) 6= 0, ∀p ∈ M . Firstly, By making use of similar
methods to the ones in [6], we will prove the following result.

Lemma 3.1. let Mn be an n-dimensional (n ≥ 3) (r − 1)-maximal spacelike
hypersurface immersed in the anti-de Sitter space Hn+1

1 (−1). Suppose in ad-
dition that Mn has two distinct principal curvatures λ 6= 0 and µ with the
multiplicities (n− 1) and 1, respectively. Then

λ;nn =
r + n

n

(λ;n)2

λ
− n

r
λ +

n(n− r)
r2

λ3,(3.11)

λ;aa = − r

n

(λ;n)2

λ
.(3.12)

Proof. Using (2.5) we have

Σkhijkωk = δijdλi + (λi − λj)ωij .(3.13)

Thus
habk = 0, a 6= b,

haab = haba = 0 ⇒ λ;a = µ;a = 0 = hnna,

haan = λ;n,

hnnn = µ;n = −n− r

r
λ;n.

(3.14)

Letting i = a, j = n in (3.13), we get

(3.15) ωan =
λ;n

λ− µ
ωa =

r

n

λ;n

λ
ωa.

By the definition of covariant derivative, we have

(3.16)
∑

λ;ijωj = dλ;i + Σjλ;jωji = dλ;i + λ;nωni,

(3.17) dλ;n =
∑

j

λ;njωj .
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From (3.15), we obtain

dwan =
r

n

(
1
λ

dλ;n ∧ ωa − λ;n

λ2
dλ ∧ ωa +

λ;n

λ
dωa

)

=
r

n


 1

λ

∑

j

λ;njωj ∧ ωa − (λ;n)2

λ2
ωn ∧ ωa +

λ;n

λ

∑

j

ωaj ∧ ωj




=
r

n

(
1
λ

∑

b

λ;nbωb ∧ ωa +
1
λ

λ;nnωn ∧ ωa − (λ;n)2

λ2
ωn ∧ ωa

+
λ;n

λ

∑

b

ωab ∧ ωb +
λ;n

λ
ωan ∧ ωn

)
.

On the other hand, by the structure equations of M , we have

dwan =
∑

j

ωaj ∧ ωjn − 1
2

∑

k,l

Ranklωk ∧ ωl

=
r

n

λ;n

λ

∑

b

ωab ∧ ωb − 1
2

∑

k,l

Ranklωk ∧ ωl.

By (2.1) we can see

Ranbk = −(δabδnk − δakδnb)− λaλn(δabδnk − δakδnb)
= −δabδnk − λaλnδabδnk,

Ranbc = 0, Ranbn = −δab − λµδab.

Noting that Mn is (r − 1)-maximal, i.e., Hr = 0, but λ 6= 0. Using (3.6), we
have

dwan =
r

n

λ;n

λ

∑

b

ωab ∧ ωb + (1 + λµ)ωa ∧ ωn

=
r

n

λ;n

λ

∑

b

ωab ∧ ωb +
(

1− n− r

r
λ2

)
ωa ∧ ωn.

So we have

λ;nn =
r + n

n

(λ;n)2

λ
− n

r
λ +

n(n− r)
r2

λ3.

Let i = a in (3.16). Then
∑

λ;ajωj = dλ;a + Σjλ;jωja = λ;nωna = − r

n

(λ;n)2

λ
ωa,

so

λ;aa = − r

n

(λ;n)2

λ
. ¤

Secondly, based on Lemma 3.1, we have the following key lemma.
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Lemma 3.2. let Mn be an n-dimensional (n ≥ 3) (r − 1)-maximal spacelike
hypersurface immersed in anti-de Sitter space Hn+1

1 (−1). Suppose in addition
that Mn has two distinct principal curvatures λ 6= 0 and µ with the multiplici-
ties (n− 1) and 1, respectively. Then

1
2
4S =

(3n− 2)r2 − 2rn + n2 − (r − 1)[(n− 2)r2 + n2]
4n(r2 − 2r + n)

|∇S|2
S

(3.18)

− n

r
S +

n− r

r2 − 2r + n
S2.

Proof. By Lemma 3.1, we have

∑

i

λi(nH);ii

(3.19)

=
∑

a

λ(nH);aa + µ(nH);nn

=
n(r − 1)

r
λ

∑
a

λ;aa − n(n− r)(r − 1)
r2

λλ;nn

= − (n− 1)(r − 1)(λ;n)2− n(n− r)(r − 1)
r2

[
r + n

n
(λ;n)2− n

r
λ2+

n(n− r)
r2

λ4

]

= − (r − 1)[(n− 2)r2 + n2]
r2

(λ;n)2 +
n2(n− r)(r − 1)

r4
λ2[r − (n− r)λ2].

By (3.9), we obtain

(3.20) |∇S|2 =
∑

i

(S;i)2 =
4n2(r2 − 2r + n)2

r4
λ2(λ;n)2.

By (3.14), we have

(3.21) |∇A|2 =
∑

i,j,k

h2
ijk = h2

nnn + 3
∑

i

h2
iin =

(3n− 2)r2 − 2rn + n2

r2
(λ;n)2.

From (3.8)–(3.10), it is easy to see that

(3.22) λ2 =
r2

n(r2 − 2r + n)
S,

(3.23) S − nH2 =
n− 1

r2 − 2r + n
S,

(3.24) nHtrA3 =
(r − 1)(r3 − 3r2 + 3rn− n2)

(r2 − 2r + n)2
S2.

Substituting (3.22) into (3.20), we obtain

(3.25) (λ;n)2 =
r2

4n(r2 − 2r + n)
|∇S|2

S
.
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Furthermore

(3.26) |∇A|2 =
(3n− 2)r2 − 2rn + n2

4n(r2 − 2r + n)
|∇S|2

S
.

Using (3.22) and (3.25), and substituting (3.19), (3.23), (3.24) and (3.26) into
(2.6), we can get
1
2
4S = |∇A|2 + S2 − n(S − nH2)− nHtrA3 +

∑

i

λi(nH);ii

=
(3n− 2)r2 − 2rn + n2

4n(r2 − 2r + n)
|∇S|2

S
+ S2 − n(n− 1)

r2 − 2r + n
S

− (r − 1)(r3 − 3r2 + 3rn− n2)
(r2 − 2r + n)2

S2 − (r − 1)[(n− 2)r2 + n2]
4n(r2 − 2r + n)

|∇S|2
S

+
n(n− r)(r − 1)
r(r2 − 2r + n)

S − (n− r)2(r − 1)
(r2 − 2r + n)2

S2

=
(3n− 2)r2 − 2rn + n2 − (r − 1)[(n− 2)r2 + n2]

4n(r2 − 2r + n)
|∇S|2

S

−n

r
S +

n− r

r2 − 2r + n
S2. ¤

We need the following lemma (see [6, 9]).

Lemma 3.3 (Omori [6], Yau [9]). Let M be a complete Riemannian manifold
with Ricci curvature bounded from below. Let F be a C2 function on M which
is bounded from below on M . Then there exists a sequence of points pk in M
such that

(3.27) lim
k→∞

F (pk) = inf(F ), lim
k→∞

|∇F (pk)| = 0, lim
k→∞

4F (pk) ≥ 0.

4. Proof of Theorem 1.3

The case for λ ≡ 0, from what has been discussed in Section 4, we know
that Mn is both 1-maximal and (n− 1)-maximal.

If λ(p) 6= 0, ∀p ∈ M , from Gauss equation (2.1) we have

Rii = −(n− 1)− nHλi + λ2
i

≥ −(n− 1)− n2H2

4
+

(
λi − nH

2

)2

≥ −(n− 1)− n2H2

4

= −(n− 1)− n2(r − 1)2

4r2
λ2.(4.1)

Now we let W1 = {p ∈ M | λ2(p) > r
n−r}, W2 = {p ∈ M | λ2(p) ≤ r

n−r}. Since

(4.2) S =
n(r2 − 2r + n)

r2
λ2 >

r2 − 2r + n

n
inf(λ− µ)2 > 0
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if p ∈ W1, obviously, we have (1.2). There is nothing to prove. Thus we con-
sider on W2, i.e., λ2(p) ≤ r

n−r . From (4.1), we know that the Ricci curvature
is bounded from below on W2. Consequently, applying Omori and Yau’s gen-
eralized maximum principle to function S on W2, it is possible to find in W2 a
sequence of points pk, k ∈ N , such that

(4.3) lim
k→∞

S(pk) = inf
W2

(S) := α̃, lim
k→∞

|∇S(pk)| = 0, lim
k→∞

4S(pk) ≥ 0.

Taking limit of both sides of (3.18), we obtain

(4.4) α̃

[
α̃− n(r2 − 2r + n)

r(n− r)

]
≥ 0.

Using assumption inf(λ− µ)2 > 0, we have α̃ ≥ α := infM (S) > 0. Hence

α̃ ≥ n(r2 − 2r + n)
r(n− r)

,(4.5)

then we get α̃ = n(r2−2r+n)
r(n−r) by the definition of W2. Hence we prove the

inequality (1.2). If S = n(r2−2r+n)
r(n−r) , then λ is constant by (3.9), the same as

µ by (3.6). Therefore M is isoparametric with two constant distinct principal
curvatures. According to Theorem 1 in [5] or by the congruence theorem of
Abe, Koike, and Yamaguchi [1], M is the hyperbolic cylinder Hn−1(c1)×H1(c2).
This finishes the proof of Theorem 1.3.

Corollary 1.4 is obvious by Theorem 1.3.

Remark 4.1. Wei [8] studied n-dimensional compact hypersurfaces with Hr ≡ 0
and with two distinct principal curvatures in (n + 1)-dimensional unit sphere
Sn+1(1).
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