ON COMPLETE SPACELIKE $(r-1)$-MAXIMAL HYPERSURFACES IN THE ANTI-DE SITTER SPACE $\mathbb{H}_{1}^{n+1}(-1)$

Biaogui Yang

Abstract

In this paper we investigate complete spacelike ($r-1$)-maximal (i.e., $H_{r} \equiv 0$) hypersurfaces with two distinct principal curvatures in the anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. We give a characterization of the hyperbolic cylinder.

1. Introduction

Let $\bar{M}_{1}^{n+1}(c)$ be an $(n+1)$-dimensional Lorenztian space form with constant sectional curvature c. When $c>0, M_{1}^{n+1}(c)=\mathbb{S}_{1}^{n+1}(c)$ is called $(n+1)$ dimensional de Sitter space; when $c=0, M_{1}^{n+1}(c)=\mathbb{L}^{n+1}$ is called $(n+1)$ dimensional Lorentz-Minkowski space; when $c<0, M_{1}^{n+1}(c)=\mathbb{H}_{1}^{n+1}(c)$ is called $(n+1)$-dimensional anti-de Sitter space. A hypersurface M^{n} is said to be spacelike if the induced metric on M^{n} from that of the ambient space is Riemannian. The spacelike hypersurfaces in the anti-de Sitter space $\mathbb{H}_{1}^{n+1}(c)$ are very interesting geometrical objects that were investigated by many geometers.
T. Ishihara [4] proved the following well-known result:

Theorem 1.1 ([4]). Let M^{n} be an n-dimensional complete maximal spacelike hypersurface in the anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$, and let S be square of the norm of the second fundamental form. Then,

$$
\begin{equation*}
S \leq n \tag{1.1}
\end{equation*}
$$

and $S=n$ if and only if $M^{n}=\mathbb{H}^{m}\left(-\frac{n}{m}\right) \times \mathbb{H}^{n-m}\left(-\frac{n}{n-m}\right)(1 \leq m \leq n-1)$.
Recently, Cao and Wei [2] studied n-dimensional complete maximal spacelike hypersurfaces with two distinct principal curvatures in an $(n+1)$-dimensional anti-de Sitter space and gave a characterization of hyperbolic cylinders in the anti-de Sitter space. The author and Liu [10] extended their result and proved the following result:

Received April 10, 2009.
2000 Mathematics Subject Classification. 53B30, 53C42, 53C50.
Key words and phrases. spacelike hypersurface, ($r-1$)-maximal, anti-de Sitter space, hyperbolic cylinder, generalized maximum principle.

Theorem 1.2 ([10]). Let M^{n} be an n-dimensional ($n \geq 3$) complete spacelike hypersurface with constant mean curvature H immersed in an anti-de Sitter space $\mathbb{H}_{1}^{n+1}(c)$. Suppose in addition that M has two distinct principal curvatures λ and μ with the multiplicities $(n-1)$ and 1 , respectively, and satisfying $\inf (\lambda-\mu)^{2}>0$, then M^{n} is the hyperbolic cylinder $\mathbb{H}^{n-1}\left(c_{1}\right) \times \mathbb{H}^{1}\left(c_{2}\right)$.

In this paper we will investigate complete $(r-1)$-maximal spacelike hypersurfaces with two principal curvature in the anti-de Sitter spacetime $\mathbb{H}_{1}^{n+1}(-1)$ and obtain the following main result:
Theorem 1.3. Let M^{n} be an n-dimensional $(n \geq 3)$ connected, complete ($r-$ 1)-maximal $(1 \leq r \leq n)$ spacelike hypersurface immersed in anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. Suppose in addition that M^{n} has two distinct principal curvatures λ and μ with the multiplicities $n-1$ and 1 , respectively. Then
(i) $\lambda \equiv 0$ and $r \geq 2$. Furthermore, the normalized scalar curvature $R=-1$ and M^{n} is both 1-maximal and $(n-1)$-maximal, or
(ii) S satisfies inequality

$$
\begin{equation*}
S \geq \frac{n\left(r^{2}-2 r+n\right)}{r(n-r)} \tag{1.2}
\end{equation*}
$$

provided that $\inf (\lambda-\mu)^{2}>0$, and $S=\frac{n\left(r^{2}-2 r+n\right)}{r(n-r)}$ if and only if M is the hyperbolic cylinder $\mathbb{H}^{n-1}\left(c_{1}\right) \times \mathbb{H}^{1}\left(c_{2}\right)$.

Corollary 1.4. Let M^{n} be an n-dimensional ($n \geq 3$) connected, complete ($r-1$)-maximal spacelike hypersurface immersed in the anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. Suppose in addition that M has two distinct principal curvatures $\lambda \neq 0$ and μ with the multiplicities $n-1$ and 1 , respectively, satisfying $\inf (\lambda-$ $\mu)^{2}>0$, and

$$
\begin{equation*}
S \leq \frac{n\left(r^{2}-2 r+n\right)}{r(n-r)} \tag{1.3}
\end{equation*}
$$

Then $S=\frac{n\left(r^{2}-2 r+n\right)}{r(n-r)}$ and M is hyperbolic cylinder $\mathbb{H}^{n-1}\left(c_{1}\right) \times \mathbb{H}^{1}\left(c_{2}\right)$.
Remark 1.5. When $r=1$, since $H=\frac{1}{n}\{(n-1) \lambda+\mu\} \equiv 0$, but $\lambda \neq \mu$, then $\lambda \neq 0$. By Theorem 1.3, we have $S \geq n$. Therefore, using Theorem 1.1, we can obtain Theorem 1.2 in [2] from Theorem 1.3. Hence we extend Cao and Wei's result in [2] from another perspective.

2. Preliminaries

Let M^{n} be a complete hypersurface in anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. For any $p \in M$, we can choose a local orthonormal frame fields $e_{1}, \ldots, e_{n}, e_{n+1}$ in a neighborhood U of M such that e_{1}, \ldots, e_{n} are tangential to M^{n} and e_{n+1} is normal to M^{n}. Let $\omega_{1}, \ldots, \omega_{n}, \omega_{n+1}$ be the corresponding dual frame so that the pseudo-Riemannian metric of $\mathbb{H}_{1}^{n+1}(-1)$ is given by $d \bar{s}^{2}=\sum_{i} \omega_{i}^{2}-\omega_{n+1}^{2}$. The smooth connection 1-forms are denoted by $\omega_{i j}$.

A well-known argument shows that the forms $\omega_{i n+1}$ may be expressed as $\omega_{i n+1}=\sum_{j} h_{i j} \omega_{j}, h_{i j}=h_{j i}$. The square of the length of the second fundamental form $h=\sum h_{i j} \omega_{i} \otimes \omega_{j}$ is given by $S=|h|^{2}=\sum_{i, j} h_{i j}^{2}$.

Associated to the second fundamental form h of M^{n} one has n invariants S_{r}, given by the equality

$$
\operatorname{det}(t I-A)=\sum_{k=0}^{n}(-1)^{k} S_{k} t^{n-k}
$$

where A is the shape operator of M^{n}. If $p \in M$ and $\left\{e_{k}\right\}_{1 \leq k \leq n}$ is a basis of $T_{p} M$ formed by eigenvectors of the shape operator A_{p}, with corresponding eigenvalues λ_{k} 's, one immediately sees that

$$
S_{r}=\sigma_{r}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $\sigma_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is the r-th elementary symmetric polynomial on the indeterminates x_{1}, \ldots, x_{n}. The r-th mean curvature of M is given by

$$
H_{r}=\frac{1}{\binom{n}{r}} S_{r}
$$

In particular, when $r=1$

$$
H_{1}=\frac{1}{n} \sum_{i} \lambda_{i}=\frac{1}{n} S_{1}=H
$$

is nothing but the mean curvature of M.
A spacelike hypersurface M^{n} in Lorentzian space form $\bar{M}_{1}^{n+1}(c)$ is called $(r-1)$-maximal if $H_{r} \equiv 0$. In particular, an 0-maximal spacelike hypersurface is precisely ordinary maximal spacelike one.

The Gauss equations are [7]

$$
\begin{gather*}
R_{i j k l}=-\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)-\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right) \tag{2.1}\\
R_{i j}=-(n-1) \delta_{i j}-n H h_{i j}+\sum_{k} h_{i k} h_{k j} \tag{2.2}\\
n(n-1)(R+1)=-n^{2} H^{2}+S=-n(n-1) H_{2} \tag{2.3}
\end{gather*}
$$

where R is the normalized scalar curvature of M^{n}.
The Codazzi equation is

$$
\begin{equation*}
h_{i j k}=h_{i k j} \tag{2.4}
\end{equation*}
$$

where the covariant derivative of $h_{i j}$ is defined by

$$
\begin{equation*}
\sum_{k} h_{i j k} \omega_{k}=d h_{i j}+\sum_{k} h_{k j} \omega_{k i}+\sum_{k} h_{i k} \omega_{k j} . \tag{2.5}
\end{equation*}
$$

We also have the Simons formula [3]

$$
\begin{equation*}
\frac{1}{2} \triangle S=|\nabla A|^{2}+S^{2}-n\left(S-n H^{2}\right)-n H \operatorname{tr} A^{3}+n \sum_{i} \lambda_{i} H_{; i i} \tag{2.6}
\end{equation*}
$$

where $H_{; i i}=e_{i}\left(e_{i}(H)\right)$.

3. Some lemmas

Let M^{n} be an $(r-1)$-maximal spacelike hypersurface with two distinct principal curvatures λ and μ (which means that $\lambda(p) \neq \mu(p), \forall p \in M$) in anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. In addition we assume that the multiplicities of the principal curvatures λ and μ are $n-1$ and 1 , respectively, i.e., $\lambda_{1}=$ $\cdots=\lambda_{n-1}=\lambda, \lambda_{n}=\mu$. In the following we shall make use of the following convention on the ranges of indices:

$$
1 \leq i, j, k, l \leq n, 1 \leq a, b, \ldots \leq n-1
$$

Then $\lambda_{a}=\lambda, \lambda_{n}=\mu$, and

$$
\begin{aligned}
S_{r} & =\binom{n}{r} H_{r}=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{r}} \\
& =\binom{n-1}{r} \lambda^{r}+\binom{n-1}{r-1} \lambda^{r-1} \mu=0,
\end{aligned}
$$

hence

$$
\begin{equation*}
\lambda^{r-1}[(n-r) \lambda+r \mu]=0 . \tag{3.1}
\end{equation*}
$$

Letting $U=\{p \in M \mid \lambda(p) \neq 0\}, V=\{q \in M \mid(n-r) \lambda(q)+r \mu(q)=0\}$. Since these principal curvatures λ and μ are continuous, U is an open set in M, V is a closed set in M. We claim that $U=V$. In fact, if $p \in U$, i.e., $\lambda(p) \neq 0$, by (3.1), $(n-r) \lambda(p)+r \mu(p)=0$, and $p \in V$. Hence $U \subseteq V$. On the other hand, if $q \in V$, then $(n-r) \lambda(q)+r \mu(q)=0$. Since λ and μ are distinct, so $\lambda(q) \neq 0$, otherwise $\lambda(q)=0=\mu(q)$. That is $q \in U$, then we have $V \subseteq U$. Therefore $U=V$. Note that if M is connected, then $U=\emptyset$ or $U=M$. This is, λ is always 0 or λ is never 0 .
(i) If $U=\emptyset$, then $\lambda \equiv 0$. Meanwhile, $r \geq 2$, otherwise, by $H=\frac{1}{n}((n-1) \lambda+$ $\mu)=0$, it implies that $\lambda=\mu=0$ which is a contradiction with assumption that λ and μ are distinct. Furthermore, $\binom{n}{2} H_{2}=\lambda\left(\binom{n-1}{2} \lambda+\binom{n-1}{1} \mu\right)=0$, i.e., $R=-1$ by (2.3), and $H_{n}=\lambda^{n-1} \mu=0$. Thus M^{n} is both 1-maximal and ($n-1$)-maximal.
(ii) If $U=M$, then $\lambda(p) \neq 0, \forall p \in M$. By (3.1), we obtain

$$
\begin{equation*}
(n-r) \lambda+r \mu=0 \tag{3.2}
\end{equation*}
$$

We notice that

$$
\begin{align*}
(n-1) \lambda+\mu & =n H \tag{3.3}\\
(n-1) \lambda^{2}+\mu^{2} & =S \tag{3.4}\\
(n-1) \lambda^{3}+\mu^{3} & =\operatorname{tr} A^{3} \tag{3.5}
\end{align*}
$$

Solving the above system of equations, we have

$$
\begin{align*}
\mu & =-\frac{n-r}{r} \lambda, \tag{3.6}\\
\lambda-\mu & =\frac{n}{r} \lambda, \tag{3.7}\\
H & =\frac{r-1}{r} \lambda, \tag{3.8}\\
S & =\frac{n\left(r^{2}-2 r+n\right)}{r^{2}} \lambda^{2}, \tag{3.9}\\
\operatorname{tr} A^{3} & =\frac{n\left(r^{3}-3 r^{2}+3 r n-n^{2}\right)}{r^{3}} \lambda^{3} . \tag{3.10}
\end{align*}
$$

In following we suppose $\lambda(p) \neq 0, \forall p \in M$. Firstly, By making use of similar methods to the ones in [6], we will prove the following result.

Lemma 3.1. let M^{n} be an n-dimensional $(n \geq 3)(r-1)$-maximal spacelike hypersurface immersed in the anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. Suppose in addition that M^{n} has two distinct principal curvatures $\lambda \neq 0$ and μ with the multiplicities $(n-1)$ and 1 , respectively. Then

$$
\begin{align*}
& \lambda_{; n n}=\frac{r+n}{n} \frac{\left(\lambda_{; n}\right)^{2}}{\lambda}-\frac{n}{r} \lambda+\frac{n(n-r)}{r^{2}} \lambda^{3}, \tag{3.11}\\
& \lambda_{; a a}=-\frac{r}{n} \frac{\left(\lambda_{; n}\right)^{2}}{\lambda} . \tag{3.12}
\end{align*}
$$

Proof. Using (2.5) we have

$$
\begin{equation*}
\Sigma_{k} h_{i j k} \omega_{k}=\delta_{i j} d \lambda_{i}+\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j} \tag{3.13}
\end{equation*}
$$

Thus

$$
\begin{align*}
h_{a b k} & =0, a \neq b, \\
h_{a a b} & =h_{a b a}=0 \Rightarrow \lambda_{; a}=\mu_{; a}=0=h_{n n a}, \\
h_{a a n} & =\lambda_{; n}, \tag{3.14}\\
h_{n n n} & =\mu_{; n}=-\frac{n-r}{r} \lambda_{; n} .
\end{align*}
$$

Letting $i=a, j=n$ in (3.13), we get

$$
\begin{equation*}
\omega_{a n}=\frac{\lambda_{; n}}{\lambda-\mu} \omega_{a}=\frac{r}{n} \frac{\lambda_{; n}}{\lambda} \omega_{a} . \tag{3.15}
\end{equation*}
$$

By the definition of covariant derivative, we have

$$
\begin{gather*}
\sum \lambda_{; i j} \omega_{j}=d \lambda_{; i}+\Sigma_{j} \lambda_{; j} \omega_{j i}=d \lambda_{; i}+\lambda_{; n} \omega_{n i} \tag{3.16}\\
d \lambda_{; n}=\sum_{j} \lambda_{; n j} \omega_{j} \tag{3.17}
\end{gather*}
$$

From (3.15), we obtain

$$
\begin{aligned}
d w_{a n}= & \frac{r}{n}\left(\frac{1}{\lambda} d \lambda_{; n} \wedge \omega_{a}-\frac{\lambda_{; n}}{\lambda^{2}} d \lambda \wedge \omega_{a}+\frac{\lambda_{; n}}{\lambda} d \omega_{a}\right) \\
= & \frac{r}{n}\left(\frac{1}{\lambda} \sum_{j} \lambda_{; n j} \omega_{j} \wedge \omega_{a}-\frac{\left(\lambda_{; n}\right)^{2}}{\lambda^{2}} \omega_{n} \wedge \omega_{a}+\frac{\lambda_{; n}}{\lambda} \sum_{j} \omega_{a j} \wedge \omega_{j}\right) \\
= & \frac{r}{n}\left(\frac{1}{\lambda} \sum_{b} \lambda_{; n b} \omega_{b} \wedge \omega_{a}+\frac{1}{\lambda} \lambda_{; n n} \omega_{n} \wedge \omega_{a}-\frac{\left(\lambda_{; n}\right)^{2}}{\lambda^{2}} \omega_{n} \wedge \omega_{a}\right. \\
& \left.+\frac{\lambda_{; n}}{\lambda} \sum_{b} \omega_{a b} \wedge \omega_{b}+\frac{\lambda_{; n}}{\lambda} \omega_{a n} \wedge \omega_{n}\right) .
\end{aligned}
$$

On the other hand, by the structure equations of M, we have

$$
\begin{aligned}
d w_{a n} & =\sum_{j} \omega_{a j} \wedge \omega_{j n}-\frac{1}{2} \sum_{k, l} R_{a n k l} \omega_{k} \wedge \omega_{l} \\
& =\frac{r}{n} \frac{\lambda_{; n}}{\lambda} \sum_{b} \omega_{a b} \wedge \omega_{b}-\frac{1}{2} \sum_{k, l} R_{a n k l} \omega_{k} \wedge \omega_{l}
\end{aligned}
$$

By (2.1) we can see

$$
\begin{aligned}
R_{a n b k} & =-\left(\delta_{a b} \delta_{n k}-\delta_{a k} \delta_{n b}\right)-\lambda_{a} \lambda_{n}\left(\delta_{a b} \delta_{n k}-\delta_{a k} \delta_{n b}\right) \\
& =-\delta_{a b} \delta_{n k}-\lambda_{a} \lambda_{n} \delta_{a b} \delta_{n k}, \\
& R_{a n b c}=0, R_{a n b n}=-\delta_{a b}-\lambda \mu \delta_{a b} .
\end{aligned}
$$

Noting that M^{n} is $(r-1)$-maximal, i.e., $H_{r}=0$, but $\lambda \neq 0$. Using (3.6), we have

$$
\begin{aligned}
d w_{a n} & =\frac{r}{n} \frac{\lambda_{; n}}{\lambda} \sum_{b} \omega_{a b} \wedge \omega_{b}+(1+\lambda \mu) \omega_{a} \wedge \omega_{n} \\
& =\frac{r}{n} \frac{\lambda_{; n}}{\lambda} \sum_{b} \omega_{a b} \wedge \omega_{b}+\left(1-\frac{n-r}{r} \lambda^{2}\right) \omega_{a} \wedge \omega_{n}
\end{aligned}
$$

So we have

$$
\lambda_{; n n}=\frac{r+n}{n} \frac{\left(\lambda_{; n}\right)^{2}}{\lambda}-\frac{n}{r} \lambda+\frac{n(n-r)}{r^{2}} \lambda^{3} .
$$

Let $i=a$ in (3.16). Then

$$
\sum \lambda_{; a j} \omega_{j}=d \lambda_{; a}+\Sigma_{j} \lambda_{; j} \omega_{j a}=\lambda_{; n} \omega_{n a}=-\frac{r}{n} \frac{\left(\lambda_{; n}\right)^{2}}{\lambda} \omega_{a}
$$

SO

$$
\lambda_{; a a}=-\frac{r}{n} \frac{\left(\lambda_{; n}\right)^{2}}{\lambda}
$$

Secondly, based on Lemma 3.1, we have the following key lemma.

Lemma 3.2. let M^{n} be an n-dimensional $(n \geq 3)(r-1)$-maximal spacelike hypersurface immersed in anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$. Suppose in addition that M^{n} has two distinct principal curvatures $\lambda \neq 0$ and μ with the multiplicities $(n-1)$ and 1 , respectively. Then

$$
\begin{align*}
\frac{1}{2} \triangle S= & \frac{(3 n-2) r^{2}-2 r n+n^{2}-(r-1)\left[(n-2) r^{2}+n^{2}\right]}{4 n\left(r^{2}-2 r+n\right)} \frac{|\nabla S|^{2}}{S} \tag{3.18}\\
& -\frac{n}{r} S+\frac{n-r}{r^{2}-2 r+n} S^{2}
\end{align*}
$$

Proof. By Lemma 3.1, we have
(3.19)
$\sum_{i} \lambda_{i}(n H)_{; i i}$
$=\sum_{a} \lambda(n H)_{; a a}+\mu(n H)_{; n n}$
$=\frac{n(r-1)}{r} \lambda \sum_{a} \lambda_{; a a}-\frac{n(n-r)(r-1)}{r^{2}} \lambda \lambda_{; n n}$
$=-(n-1)(r-1)\left(\lambda_{; n}\right)^{2}-\frac{n(n-r)(r-1)}{r^{2}}\left[\frac{r+n}{n}\left(\lambda_{; n}\right)^{2}-\frac{n}{r} \lambda^{2}+\frac{n(n-r)}{r^{2}} \lambda^{4}\right]$
$=-\frac{(r-1)\left[(n-2) r^{2}+n^{2}\right]}{r^{2}}\left(\lambda_{; n}\right)^{2}+\frac{n^{2}(n-r)(r-1)}{r^{4}} \lambda^{2}\left[r-(n-r) \lambda^{2}\right]$.
By (3.9), we obtain

$$
\begin{equation*}
|\nabla S|^{2}=\sum_{i}\left(S_{; i}\right)^{2}=\frac{4 n^{2}\left(r^{2}-2 r+n\right)^{2}}{r^{4}} \lambda^{2}\left(\lambda_{; n}\right)^{2} . \tag{3.20}
\end{equation*}
$$

By (3.14), we have
(3.21) $|\nabla A|^{2}=\sum_{i, j, k} h_{i j k}^{2}=h_{n n n}^{2}+3 \sum_{i} h_{i i n}^{2}=\frac{(3 n-2) r^{2}-2 r n+n^{2}}{r^{2}}\left(\lambda_{; n}\right)^{2}$.

From (3.8)-(3.10), it is easy to see that

$$
\begin{gather*}
\lambda^{2}=\frac{r^{2}}{n\left(r^{2}-2 r+n\right)} S, \tag{3.22}\\
S-n H^{2}=\frac{n-1}{r^{2}-2 r+n} S, \tag{3.23}\\
n H \operatorname{tr} A^{3}=\frac{(r-1)\left(r^{3}-3 r^{2}+3 r n-n^{2}\right)}{\left(r^{2}-2 r+n\right)^{2}} S^{2} . \tag{3.24}
\end{gather*}
$$

Substituting (3.22) into (3.20), we obtain

$$
\begin{equation*}
\left(\lambda_{; n}\right)^{2}=\frac{r^{2}}{4 n\left(r^{2}-2 r+n\right)} \frac{|\nabla S|^{2}}{S} . \tag{3.25}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
|\nabla A|^{2}=\frac{(3 n-2) r^{2}-2 r n+n^{2}}{4 n\left(r^{2}-2 r+n\right)} \frac{|\nabla S|^{2}}{S} \tag{3.26}
\end{equation*}
$$

Using (3.22) and (3.25), and substituting (3.19), (3.23), (3.24) and (3.26) into (2.6), we can get

$$
\begin{aligned}
\frac{1}{2} \triangle S= & |\nabla A|^{2}+S^{2}-n\left(S-n H^{2}\right)-n H \operatorname{tr} A^{3}+\sum_{i} \lambda_{i}(n H)_{; i i} \\
= & \frac{(3 n-2) r^{2}-2 r n+n^{2}}{4 n\left(r^{2}-2 r+n\right)} \frac{|\nabla S|^{2}}{S}+S^{2}-\frac{n(n-1)}{r^{2}-2 r+n} S \\
& -\frac{(r-1)\left(r^{3}-3 r^{2}+3 r n-n^{2}\right)}{\left(r^{2}-2 r+n\right)^{2}} S^{2}-\frac{(r-1)\left[(n-2) r^{2}+n^{2}\right]}{4 n\left(r^{2}-2 r+n\right)} \frac{|\nabla S|^{2}}{S} \\
& +\frac{n(n-r)(r-1)}{r\left(r^{2}-2 r+n\right)} S-\frac{(n-r)^{2}(r-1)}{\left(r^{2}-2 r+n\right)^{2}} S^{2} \\
= & \frac{(3 n-2) r^{2}-2 r n+n^{2}-(r-1)\left[(n-2) r^{2}+n^{2}\right]}{4 n\left(r^{2}-2 r+n\right)} \frac{|\nabla S|^{2}}{S} \\
& -\frac{n}{r} S+\frac{n-r}{r^{2}-2 r+n} S^{2} .
\end{aligned}
$$

We need the following lemma (see $[6,9]$).
Lemma 3.3 (Omori [6], Yau [9]). Let M be a complete Riemannian manifold with Ricci curvature bounded from below. Let F be a C^{2} function on M which is bounded from below on M. Then there exists a sequence of points p_{k} in M such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(p_{k}\right)=\inf (F), \lim _{k \rightarrow \infty}\left|\nabla F\left(p_{k}\right)\right|=0, \lim _{k \rightarrow \infty} \triangle F\left(p_{k}\right) \geq 0 \tag{3.27}
\end{equation*}
$$

4. Proof of Theorem 1.3

The case for $\lambda \equiv 0$, from what has been discussed in Section 4, we know that M^{n} is both 1-maximal and $(n-1)$-maximal.

If $\lambda(p) \neq 0, \forall p \in M$, from Gauss equation (2.1) we have

$$
\begin{align*}
R_{i i} & =-(n-1)-n H \lambda_{i}+\lambda_{i}^{2} \\
& \geq-(n-1)-\frac{n^{2} H^{2}}{4}+\left(\lambda_{i}-\frac{n H}{2}\right)^{2} \\
& \geq-(n-1)-\frac{n^{2} H^{2}}{4} \\
& =-(n-1)-\frac{n^{2}(r-1)^{2}}{4 r^{2}} \lambda^{2} . \tag{4.1}
\end{align*}
$$

Now we let $W_{1}=\left\{p \in M \left\lvert\, \lambda^{2}(p)>\frac{r}{n-r}\right.\right\}, W_{2}=\left\{p \in M \left\lvert\, \lambda^{2}(p) \leq \frac{r}{n-r}\right.\right\}$. Since

$$
\begin{equation*}
S=\frac{n\left(r^{2}-2 r+n\right)}{r^{2}} \lambda^{2}>\frac{r^{2}-2 r+n}{n} \inf (\lambda-\mu)^{2}>0 \tag{4.2}
\end{equation*}
$$

if $p \in W_{1}$, obviously, we have (1.2). There is nothing to prove. Thus we consider on W_{2}, i.e., $\lambda^{2}(p) \leq \frac{r}{n-r}$. From (4.1), we know that the Ricci curvature is bounded from below on W_{2}. Consequently, applying Omori and Yau's generalized maximum principle to function S on W_{2}, it is possible to find in W_{2} a sequence of points $p_{k}, k \in N$, such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} S\left(p_{k}\right)=\inf _{W_{2}}(S):=\widetilde{\alpha}, \lim _{k \rightarrow \infty}\left|\nabla S\left(p_{k}\right)\right|=0, \lim _{k \rightarrow \infty} \triangle S\left(p_{k}\right) \geq 0 \tag{4.3}
\end{equation*}
$$

Taking limit of both sides of (3.18), we obtain

$$
\begin{equation*}
\widetilde{\alpha}\left[\widetilde{\alpha}-\frac{n\left(r^{2}-2 r+n\right)}{r(n-r)}\right] \geq 0 \tag{4.4}
\end{equation*}
$$

Using assumption $\inf (\lambda-\mu)^{2}>0$, we have $\widetilde{\alpha} \geq \alpha:=\inf _{M}(S)>0$. Hence

$$
\begin{equation*}
\widetilde{\alpha} \geq \frac{n\left(r^{2}-2 r+n\right)}{r(n-r)} \tag{4.5}
\end{equation*}
$$

then we get $\widetilde{\alpha}=\frac{n\left(r^{2}-2 r+n\right)}{r(n-r)}$ by the definition of W_{2}. Hence we prove the inequality (1.2). If $S=\frac{n\left(r^{2}-2 r+n\right)}{r(n-r)}$, then λ is constant by (3.9), the same as μ by (3.6). Therefore M is isoparametric with two constant distinct principal curvatures. According to Theorem 1 in [5] or by the congruence theorem of Abe, Koike, and Yamaguchi [1], M is the hyperbolic cylinder $\mathbb{H}^{n-1}\left(c_{1}\right) \times \mathbb{H}^{1}\left(c_{2}\right)$. This finishes the proof of Theorem 1.3.

Corollary 1.4 is obvious by Theorem 1.3.
Remark 4.1. Wei [8] studied n-dimensional compact hypersurfaces with $H_{r} \equiv 0$ and with two distinct principal curvatures in $(n+1)$-dimensional unit sphere $\mathbb{S}^{n+1}(1)$.

Acknowledgements. The author would like to express his gratitude to the referees for their careful reading of the original manuscript and for their comments which improved the paper.

References

[1] N. Abe, N. Koike, and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), no. 1-2, 123-136.
[2] L.-F. Cao and G.-X. Wei, A new characterization of hyperbolic cylinder in anti-de Sitter space $H_{1}^{n+1}(-1)$, J. Math. Anal. Appl. 329 (2007), no. 1, 408-414.
[3] S.-Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195-204.
[4] T. Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J. 35 (1988), no. 3, 345-352.
[5] Z.-Q. Li and X.-H. Xie, Space-like isoparametric hypersurfaces in Lorentzian space forms, Front. Math. China 1 (2006), no. 1, 130-137.
[6] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
[7] B. O'Neill, Semi-Riemannian Geometry with Appications to Relativity, Academic Press, New York, 1983.
[8] G.-X. Wei, Rigidity theorem for hypersurfaces in a unit sphere, Monatsh. Math. 149 (2006), no. 4, 343-350.
[9] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
[10] B.-G. Yang and X.-M. Liu, Complete Spacelike hypersurfaces with constant mean curvature in an anti-de Sitter space, Front. Math. China. 4 (2009), no. 4, 727-737.

School of Mathematics and Computer Sciences
Fujian Normal University
Fuzhou 350108, P. R. China
E-mail address: bgyang@163.com

