• 제목/요약/키워드: Generalized connection

검색결과 125건 처리시간 0.03초

TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO GENERALIZED TANAKA-WEBSTER CONNECTION

  • Kazan, Ahmet;Karadag, H.Bayram
    • 호남수학학술지
    • /
    • 제40권3호
    • /
    • pp.487-508
    • /
    • 2018
  • In this study, we use the generalized Tanaka-Webster connection on a trans-Sasakian manifold of type (${\alpha},{\beta}$) and obtain the curvature tensors of a trans-Sasakian manifold with respect to this connection. Also, we investigate some special curvature conditions of a trans-Sasakian manifold with respect to generalized Tanaka-Webster connection and finally, give an example for trans-Sasakian manifolds.

On Some Properties of Riemannian Manifolds with a Generalized Connection

  • Dehkordy, Azam Etemad
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1237-1246
    • /
    • 2016
  • In this paper we study some properties of submanifolds of a Riemannian manifold equipped with a generalized connection $\hat{\nabla}$. We also consider almost Hermitian manifolds that admits a special case of this generalized connection and derive some results about the behavior of this manifolds.

GENERALIZED 𝜂-RICCI SOLITONS ON QUASI-SASAKIAN 3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION

  • Shahroud Azami
    • 호남수학학술지
    • /
    • 제45권4호
    • /
    • pp.655-667
    • /
    • 2023
  • In this paper, we study quasi-Sasakian 3-dimensional manifolds admitting generalized 𝜂-Ricci solitons associated to the Schouten-van Kampen connection. We give an example of generalized 𝜂-Ricci solitons on a quasi-Sasakian 3-dimensional manifold with respect to the Schouten-van Kampen connection to prove our results.

Generalized 𝜂-Ricci Solitons on Kenmotsu Manifolds associated to the General Connection

  • Shahroud Azami
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.261-270
    • /
    • 2024
  • In this paper, we consider generalized 𝜂-Ricci solitons associated to the general connection on Kenmotsu manifolds. We confirm the existence of such solitons by constructing a non-trivial example, and we obtain some properties of Kenmotsu manifolds that admit the generalized 𝜂-Ricci solitons associated with the general connection.

GENERALIZED AFFINE DEVELOPMENTS

  • Park, Joon-Sik
    • 충청수학회지
    • /
    • 제28권1호
    • /
    • pp.65-72
    • /
    • 2015
  • The (affine) development of a smooth curve in a smooth manifold M with respect to an arbitrarily given affine connection in the bundle of affine frames over M is well known (cf. S.Kobayashi and K.Nomizu, Foundations of Differential Geometry, Vol.1). In this paper, we get the generalized affine development of a smooth curve $x_t$ ($t{\in}[0,1]$) in M into the affine tangent space at $x_0$ (${\in}M$) with respect to a given generalized affine connection in the bundle of affine frames over M.

CONFORMAL CHANGES OF A RIZZA MANIFOLD WITH A GENERALIZED FINSLER STRUCTURE

  • Park, Hong-Suh;Lee, Il-Yong
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.327-340
    • /
    • 2003
  • We are devoted to dealing with the conformal theory of a Rizza manifold with a generalized Finsler metric $G_{ij}$ (x,y) and a new conformal invariant non-linear connection $M^{i}$ $_{j}$ (x,y) constructed from the generalized Cern's non-linear connection $N^{i}$ $_{j}$ (x,y) and almost complex structure $f^{i}$ $_{j}$ (x). First, we find a conformal invariant connection ( $M_{j}$ $^{i}$ $_{k}$ , $M^{i}$ $_{j}$ , $C_{j}$ $^{i}$ $_{k}$ ) and conformal invariant tensors. Next, the nearly Kaehlerian (G, M)-structures under conformal change in a Rizza manifold are investigate.

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.