• 제목/요약/키워드: Generalized additive models

검색결과 43건 처리시간 0.021초

Oceanographic indicators for the occurrence of anchovy eggs inferred from generalized additive models

  • Kim, Jin Yeong;Lee, Jae Bong;Suh, Young-Sang
    • Fisheries and Aquatic Sciences
    • /
    • 제23권7호
    • /
    • pp.19.1-19.14
    • /
    • 2020
  • Three generalized additive models were applied to the distribution of anchovy eggs and oceanographic factors to determine the occurrence of anchovy spawning grounds in Korean waters and to identify the indicators of their occurrence using survey data from the spring and summer of 1985, 1995, and 2002. Binomial and Gaussian types of generalized additive models (GAM) and quantile generalized additive models (QGAM) revealed that egg density was influenced mostly by ocean temperature and salinity in spring, and the vertical structure of temperature, salinity, dissolved oxygen, and zooplankton biomass during summer in the upper quantiles of egg density. The GAM and QGAM model deviance explained 18.5-63.2% of the egg distribution in summer in the East and West Sea. For the principle component analysis-based GAMs, the variance explained by the final regression model was 27.3-67.0%, higher than the regular models and QGAMs for egg density in the East and West Sea. By analyzing the distribution of anchovy eggs off the Korean coast, our results revealed the optimal temperature and salinity conditions, in addition to high production and high vertical mixing, as the key indicators of the major spawning grounds of anchovies.

트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구 (Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data)

  • 정철우;김명석
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.1-17
    • /
    • 2013
  • 본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.

Tuning the Architecture of Support Vector Machine: The Case of Bankruptcy Prediction

  • Min, Jae-H.;Jeong, Chul-Woo;Kim, Myung-Suk
    • Management Science and Financial Engineering
    • /
    • 제17권1호
    • /
    • pp.19-43
    • /
    • 2011
  • Tuning the architecture of SVM (support vector machine) is to build an SVM model of better performance. Two different tuning methods of the grid search and the GA (genetic algorithm) have been addressed in the literature, each of which has its own methodological pros and cons. This paper suggests a combined method for tuning the architecture of SVM models, which employs the GAM (generalized additive models), the grid search, and the GA in sequence. The GAM is used for selecting input variables, and the grid search and the GA are employed for finding optimal parameter values of the SVM models. Applying the method to a bankruptcy prediction problem, we show that SVM model tuned by the proposed method outperforms other SVM models.

공통요인분석자혼합모형의 요인점수를 이용한 일반화가법모형 기반 신용평가 (A credit classification method based on generalized additive models using factor scores of mixtures of common factor analyzers)

  • 임수열;백장선
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권2호
    • /
    • pp.235-245
    • /
    • 2012
  • 로지스틱판별분석은 금융 분야에서 유용하게 사용되고 있는 통계적 기법으로 신용평가 시 해석이 쉽고 우수한 분별력으로 많이 활용되고 있지만 종속변수에 대한 설명변수들의 비선형적인 관계를 설명하는 부분에는 한계점이 있다. 일반화가법모형은 로지스틱판별모형의 장점과 함께 종속변수와 설명변수 사이의 비선형적인 관계도 설명할 수 있다. 그러나 연속형 설명변수의 수가 대단히 많은 경우이 두 방법은 모형에 유의한 변수를 선택해야하는 문제점이 있다. 따라서 본 연구에서는 다수의 연속형 설명변수들을 공통요인분석자혼합모형에 의한 차원축소를 통해 변환된 소수의 요인점수들을 일반화가법모형의 새로운 연속형 설명변수로 사용하여 신용분류를 하는 방법을 제시한다. 실제 금융자료를 이용하여 로지스틱판별모형과 일반화가법모형, 그리고 본 연구에서 제안한 방법에 의한 정분류율을 비교한 결과 본 연구에서 제안한 방법의 분류 성능이 더 우수하였다.

일반화가법모형에서 축소방법의 적용연구 (A Study on Applying Shrinkage Method in Generalized Additive Model)

  • 기승도;강기훈
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.207-218
    • /
    • 2010
  • 일반화가법모형은 기존 선형회귀모형의 문제점을 대부분 해결한 통계모형이지만 의미있는 독립변수의 수를 줄이는 방법이 적용되지 않을 경우 과대적합 문제가 발생할 수 있다. 그러므로 일반화가법모형에서 변수 축소방법을 적용하는 연구가 필요하다. 회귀분석에서 변수 축소방법으로 최근에는 Lasso 계열의 접근법이 연구되고 있다. 본 연구에서는 활용성이 높은 통계모형인 일반화가법모형에 Lasso 계열의 모형 중에서 Group Lasso와 Elastic net 모형을 적용하는 방법을 제시하고 이들의 해를 구하는 절차를 제안하였다. 그리고 제안된 방법을 모의실험과 실제자료인 회계년도 2005년 자동차보혐 자료에 적용을 통해 비교하여 보았다. 그 결과 본 논문에서 제안한 Group Lasso와 Elastic net을 이용하여 변수 축소를 통한 일반화가법모형이 기존의 방법보다 더 나은 결과를 제공하는 것으로 분석 되었다.

강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교 (Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm)

  • 조광곤;하태환;윤상후;장유나;정민웅
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.61-70
    • /
    • 2020
  • To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.

지구 통계 모형을 이용한 양파 재배지 농업기상정보 생성 방법 (Production of Agrometeorological Information in Onion Fields using Geostatistical Models)

  • 임지은;윤상후
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.509-518
    • /
    • 2018
  • Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.

Generalized Partially Linear Additive Models for Credit Scoring

  • Shim, Ju-Hyun;Lee, Young-K.
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.587-595
    • /
    • 2011
  • Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.

단독주택가격 추정을 위한 기계학습 모형의 응용 (Application of machine learning models for estimating house price)

  • 이창로;박기호
    • 대한지리학회지
    • /
    • 제51권2호
    • /
    • pp.219-233
    • /
    • 2016
  • 수리 또는 계량적 모형을 사용하는 사회과학연구에서 분석의 초점은 종속변수와 설명변수의 관계를 밝히는 것, 즉 설명 중심의 모형(explanatory modeling)이 지금까지 주류를 이루었다. 반면 예측(prediction) 능력 제고에 초점을 맞춘 분석은 드물었다. 본 연구에서는 이론 및 가설을 검증하거나 변수 간의 관계를 밝히는 설명 중심의 모형이 아니라 신규 관찰치에 대한 예측 오차를 줄이는, 예측 중심의 비모수 모형(non-parametric model)을 검토하였다. 서울시 강남구를 사례지역으로 선정한 후, 2011년부터 2014년까지 신고된 단독주택 실거래가를 기초자료로 하여 주택가격을 추정하였다. 적용한 비모수 모형은 기계학습 분야에서 제시된 일반가산모형(generalized additive model), 랜덤 포리스트, MARS(multivariate adaptive regression splines), SVM(support vector machines) 등이며 비교적 최근에 개발된 MARS나 SVM의 예측력이 뛰어남을 확인할 수 있었다. 마지막으로 이러한 비모수 모형에 공간적 자기상관성을 추가적으로 반영한 결과, 모형의 가격 예측력이 보다 개선되었음을 알 수 있었다. 본 연구를 계기로 그간 모수 모형에 집중되었던 부동산 가격추정 방법론이 비모수 모형으로 확대 및 다양화되기를 기대한다.

  • PDF

위치자료의 종류에 따른 생물종 분포모형 비교 연구 (Comparison of Species Distribution Models According to Location Data)

  • 서창완;박유리;최윤수
    • 대한공간정보학회지
    • /
    • 제16권4호
    • /
    • pp.59-64
    • /
    • 2008
  • 우리나라의 야생동식물 조사가 시간적, 경제적 이유로 주로 출현지역만을 대상으로 하고 있어 종분포모형을 개발할 때 각 모형의 장점을 최대한 이용하는 것이 필요하다. 본 연구는 위치자료의 종류(출현/비출현자료)에 따라 가장 대표적인 출현/비출현모형(presence-absence model)인 GAM(Generalized Additive Model)과 출현모형(presence-only model)인 Maxent(Maximum Entropy Model)를 이용하여 비교 검토하였다. 본 연구의 대상종으로는 캘리포니아의 보호종인 피셔(Martes pennanti)를 선정하고 대상지를 지역에 따라 나누었으며, 서식지환경을 설명하는 지형, 기후, 식생변수들을 이용하여 모형을 적용하였다. 그 결과 첫째, 실제 출현/비출현자료를 사용한 GAM이 임의 비출현자료를 사용한 GAM과 출현자료만을 사용한 Maxent보다 전체적으로 나은 것을 볼 수 있었다. 둘째, 실제 출현자료만을 이용한 모형을 개발할 경우 임의 비출현자료를 이용한 GAM보다 출현자료만을 이용한 Maxent가 더 나은 것을 알 수 있었다. 마지막으로 세부지역에서 개발된 모형(Klamath/Shasta, Sourthern Sierra)은 서로 서식환경이 다를 경우 다른 지역의 서식지를 잘 예측하지 못함을 알 수 있었고, 대상지 외부지역에 대해 과추정하는 경향을 보였다. 위 결과를 바탕으로 위치자료의 종류, 공간적 분포 등을 감안하여 대상지의 환경에 알맞은 모형을 선택하는 것이 바람직할 것으로 판단된다.

  • PDF