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ABSTRACT

Tuning the architecture of SVM (support vector machine) is to build an SVM model of better per-
formance. Two different tuning methods of the grid search and the GA (genetic algorithm) have been
addressed in the literature, each of which has its own methodological pros and cons. This paper sug-
gests a combined method for tuning the architecture of SVM models, which employs the GAM (gen-
eralized additive models), the grid search, and the GA in sequence. The GAM is used for selecting
input variables, and the grid search and the GA are employed for finding optimal parameter values
of the SVM models. Applying the method to a bankruptcy prediction problem, we show that SVM
model tuned by the proposed method outperforms other SVM models.

Keywords: Support Vector Machine, Generalized Additive Model, Grid Search Method, Genetic
Algorithm

1. Introduction

Among the recent studies on applications of classification and prediction meth-
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ods, it has been reported that the SVM (support vector machine) is one of the most
powerful tools for bankruptcy prediction problems with respect to prediction per-
formance. Several studies claim that the SVM even outperforms the ANN (artificial
neural networks), another popular method for bankruptcy prediction [5, 12, 14, 20,
26].

This study suggests a new fine-tuning method for the architecture of SVM mod-
els in order to improve their prediction accuracy even more than ever. For tuning the
architecture of SVM, we focus on two factors critical to the performance of SVM
models, which are the input variable selection and the parameter value optimization.

Specifically, the suggested tuning method employs the GAM (generalized addi-
tive models), the grid search, and the GA in sequence. The three different methods
are used for the following respective purposes: first, the GAM is used as a tool for the
input variable selection; second, the grid search method initializes a part of popula-
tion of the GA; and third, the GA optimizes the parameter values of the SVM model.

The suggested method is evaluated by applying it to a bankruptcy prediction
problem, which analyzes the data of failed and solvent small- and medium-sized Ko-
rean firms from 2001 to 2004. In our empirical analysis, the SVM model tuned by the
suggested method significantly outperforms the ones tuned by other existing meth-
ods.

This paper is organized as follows. Section 2 gives a concise description of SVM,
and reports the existing tuning methods for the architecture of SVM models. Section 3
describes the suggested tuning steps. In addition, the GAM approach, the grid search,
and the GA composing the tuning method are also introduced. Section 4 reports the
empirical results that are applied to some bankruptcy data, where the superiority of
the newly tuned SVM model is compared with existing SVM models. Summary and

concluding remarks follow in Section 5.

2. Support Vector Machines

Support vector machine (SVM) has been attractive to academics as well as practi-
tioners due to its methodological merits of simplicity of estimation and high predic-

tion power. Since SVM was first introduced by Boser et al. [1], it has been applied to
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numerous areas including computer science, bioinformatics, and financial problems
[3, 6,10, 13, 14, 21, 24].

2.1 Basic Algorithm of SVM

The basic algorithm of SVM is described as follows [22, 23]. In the linear separa-
tion problem, the function of SVM is to seek out a hyperplane in order to separate a
set of positively and negatively labeled train data. The hyperplane is defined by
w'x+b=0, where the parameter w € R" is a vector orthogonal to the hyperplane,

and b eRis the bias. The decision function is the hyperplane classifier

H(x) = sign(w'x+b). 1)

The hyperplane is designed such that y; (W'x; +b)>1, where x, = (x{", x*), -,

x")" €R" is a train data point, and ¥; ={-1, +1} denotes the class of the vector X;.

The margin is defined by the distance of the two parallel hyperplanes w'x+b=-1
and w'x+b=+1. Thus, the margin is calculated as %w" The margin is related to

the concept of generalization of the classifier [22].
The SVM classifier is optimized by solving the following quadratic programming

problem.

min %WTW )

subject to

y(w'x;-b)>1,  (i=1,2,-,N)
Equation (2) can be changed into the following dual model:

max —%aTQa +1"a 3)

subject to
20, (i=1,2,-,N)
y'a=0
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where the variable a € R", the sample labels y € R", the matrix Q € R™", and Q; =
vy jxiij .

The support vectors are defined as the subset of the training vectors with the
non-zero dual multiplier @;. By the complementary slackness condition, a;[y;(W'X;
+b)—1] equals zero forall i=1,2,---, N in the optimum. Thus, the support vectors
lie on the margin boundary.

However, equation (3) is not feasible if the classes cannot linearly separate. For
the non-separable case, slack variables ¢.’s and kernel funtions are introduced. The

SVM model for the non-separable case is defined as follows.

min %WTW+Ci§,. @)
i=1

subject to

y,(Wg(x)+b)21-&, (i=1,2,-,N)

¢ 20, (i=1,2,,N)

where ¢, ’s are the slack variables needed to allow misclassifications in the set of ine-
qualities, and the scalar C e R* is a regularization parameter determining the trade-
off between the minimization of the fitting errors and the minimization of the model
complexity.

The primal model of equation (4) can be converted into the following dual

model:

max —%aTQowlTa (5)

subject to
0<a<(C1
y'a=0

where & is the vector of Lagrange multipliers @;, Q is a NxN positive semi-
definite matrix, Q; = y,.y]-K(xi, X]-), and K(X,-, X]-)= #(x; )T ¢(X]-) is the kernel func-

tion.
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For the general SVM model, the complementary slackness condition has the form
o[y, (W'g(x)+b)-1+& =0 ©)
forall i=1,2,--, N in the optimum.

There are several alternatives for the kernel function, which can be found in the

previous SVM literature [2, 11]. The following kernel functions are suggested:

* K(x;, x;)=x/x;: linear kernel

+ K(x,, x,)=(7x"x; +r)": polynomial kernel

+ K(x, %) =exp{~[x ~x['}: Gaussian RBF kernel
« K(x;, x;)=tanh{yx/x; +7} : sigmoid kernel

ir
where d,7eN and yeR".
Among the alternatives, the nonlinear kernel functions can be effectively used for

nonlinear separation of the train data.

Then, the final SVM classifier is constructed as
N
H(x):sign(ZaiyiK(xi, x].)+bJ 7)
where the bias b can be obtained by averaging
N .
b=y, _zyiaiKij/ Vj 8
i=1

by the condition of equation (6).

2.2 Existing Tuning Methods for the Architecture of SVM Models

Regarding the architecture of the SVM models, several methods have been re-
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ported in the literature. The critical factors to the performance of SVM models are the
input variable selection and the parameter value optimization.

First, for the input variable selection of SVM models, particularly in the area of
bankruptcy prediction problems, there have been several approaches in the literature
such as statistical approach [20], literature review based approach [25], hybrid ap-
proach of combining several methods [14], and expert judgment based approach [19].
Among these approaches, however, the statistical approach representing independ-
ent sample t-test, stepwise LR (logistic regression), or stepwise MDA (multivariate
discriminant analysis) cannot guarantee the performance of a nonlinear SVM model
to be maximized. Likewise, the literature-review-based and the expert-judgment-
based methods are known that they are inappropriate for building an SVM model of
better performance. Therefore, a nonlinear approach would be needed as an alterna-
tive for selecting the input variables in building the nonlinear SVM models.

Second, the literature emphasizes that the values of parameters in SVM have to
be carefully chosen in advance for better performance [4, 14, 21]. These parameters
include parameter 7, the bandwidth of the Gaussian RBF kernel, and parameter C,
the regularizing parameter. Min and Lee [14] proposed the grid search method using
5-fold cross validation to find out the optimal parameter values of the Gaussian RBF
kernel. And several studies such as Howley and Madden [9], Pai and Hong [15] and
Wu et al. [25] suggested the GA for optimizing the parameter values. The two ap-
proaches, the grid search and the GA, have their own methodological pros and cons
respectively. The grid search method can search for the best one among given sets of
discrete values in a short time; however, the values found by the method are more
likely to be suboptimal. In contrast, the GA has the advantage of searching a wide
space to find out the optimal values; however, it may consume too much time to op-

timize the parameter values.

3. The Hybrid Tuning Method

We suggest a hybrid tuning method for the architecture of SVM as follows. The
main procedure contains three steps, and the method sequentially employs the GAM,

the grid search, and the GA, each of which is explained in the following subsections.
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Step 1: The GAM approach is used for selecting significant input variables. The
GAM is able to capture both linear and nonlinear relationships between
variables.

Step 2: The grid search method determines the initial values of searching or estimat-
ing target parameter values. Ultimate parameter values are sequentially es-
timated via the GA using the initial values from the grid search

Step 3: GA searches out the optimal parameter values by using the initial values
estimated in Step 2. This sequential method is called a modified GA ap-

proach.

3.1 Generalized Additive Models

The generalized additive model (GAM) was proposed by Hastie and Tibshirani
[7]. The model assumes that the dependent variables are represented as nonlinear

additive functions of the independent variables. The GAM is an extension of the GLM.

Once the linear additive term ijl B;x; inthe GLM is replaced with a more general

additive term, 27:] f;(x;), the GAM is established. Here x; is the value of the jth

variable belonging to the ith observation, and f(x;) is an arbitrary unspecified
function of the jth variable allowing nonlinearity. The GLM forces linearity on the

data, whereas the GAM allows for the nonlinearity on the data. The GAM helps dis-
cover the underlying detailed data patterns. The logistic generalized additive model

with binary response data takes the form

T J
In——=a+> f(x,) )
1 7T J=1

where 7, is the success probability, « is a constant, and the term on the far left is a

logit link function.
In the GAM in the additive term selection, two aspects are considered: which
variables should be included in the model, and how smooth a variable should be if it

is left in the model. In other words, we need to decide which x ; should remain in
the model and what the smoothing amount of the term f;(-) should be. Those de-

cisions can be made using the estimated degrees of freedom (df ) of each variable.
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According to Hastie and Tibshirani [8], the variables with df =0 should be deleted.
For the linear relationship of a variable, the corresponding df equals one. On the
other hand, nonlinear terms have a corresponding function where df >1 [18]. A lar-
ger df causes a rougher fit. After the model fit is finished, the significance of each
additive term is tested with the y* test or F test. Based on these results, each addi-
tive term is either eliminated or allowed to remain in the model.

We employed a modified backward selection approach, which is similar to the
backward selection method of ordinary linear models. The procedure uses the follow-
ing steps:

Step 1: Place all of the input variables in a generalized additive model.

Step 2: Check the df of the additive terms to determine whether the df is near 0 or
not. As previously mentioned, if the df on an additive term is near 0, the
corresponding variable is deleted from the set of input variables.

Step 3:  Place all of the remaining input variables in a generalized additive model.

Step 4: Check the df of the additive terms to determine whether the df is near 0 or
not. If there are any additive terms whose df are estimated near 0, remove
the corresponding variables and return to Step 3. Otherwise, check the sig-
nificance of the terms by p-values from y’ tests or F tests, and eliminate a
single variable of the term with the highest non-significant p -value from the
model.

Step 5:  Place all of the remaining input variables in an additive model.

Step 6: Repeat Steps 4 and 5 until all the remaining terms are significant.

Through backward selection, we can find an additive model in which all the
terms of the remaining input variables are significant under the significance level of
0.05. The variables in this last additive model are applied to the SVM model predic-
tion. To implement the GAM, we utilized the “mgcv” package in R software, which

provides the significance of the additive terms in its summary of the model fit.

3.2 Grid Search Method

A grid search method is applied to suggest the appropriate initial values for

searching target parameter values. In this article, the grid search is implemented as a
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preliminary method before the GA is employed. The grid search procedure helps the
GA detect the global optimal set of target parameter values in a moderate searching
time.

If either the grid search or the GA is exclusively used, the optimization faces
some limitations. The grid search method and the GA both offer methodological pros
and cons. One advantage is that the grid search selects a better set of values among
given sets of discrete values in a relatively short time; however, the set of values es-
timated by the grid search is more likely to be the suboptimal set. On the contrary,
the GA performs a global search to find optimal values from numerous options. The
GA’s weak point is its relatively long searching time for the global optimum. If the
search range is too wide, it takes much more time to discover the optimal set of val-
ues. Therefore, by employing the two methods in sequence, we expect they comple-
ment each other.

Candidates of initial values for target parameters are usually evaluated via the
v -fold cross-validation approach if a classification problem is involved. In this ap-
proach, the overall training data set is divided into v subsets of equal size. Each of
the v subsets is tested using the classifiers that are trained from the remaining

(v—1) subsets. The overall misclassification rate, which is the mean of the misclassi-
fication rates of all the v subsets, is computed for performance evaluation. In this
study, the grid search determines the two parameters y and C using 5-fold cross
validation. Several candidates for the pairs of y and C are evaluated through cross
validation. Among the given pairs of the two parameters, the g pairs with the lowest

overall misclassification rates are selected as the set of initial values for the following
GA search.

3.3 Genetic Algorithm

A genetic algorithm (GA) is an algorithm representing the evolving mechanism
in nature. It stochastically searches for wide and complex spaces to detect the optimal
solution. In general, the procedure of a standard GA can be described using the fol-
lowing itemized steps:

Step 1: Generate a set of n solutions (called chromosomes in GA terms) in an initial
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population.

Step 2: Evaluate those solutions in the population, and sort them in order of how
much they contribute to fitness function.

Step 3:  Select the best p solutions among the population and remove the remaining
solutions.

Step 4: Generate new (n—p) solutions using genetic operators such as selection and
mutation. The newly generated solutions replace the removed solutions of
the population.

Step 5: Repeat Steps 2 to 4 until a predetermined stopping condition is satisfied.

Step 6: Choose the best contributed solution to the fitness function among the popu-

lation as the optimal solution.

In this article, we suggest a modified version of the standard GA. The population
in the ordinary GA has only n randomly selected solutions, whereas the modified

GA has an initial population that consists of two parts: the randomly selected (n—¢q)
solutions; and the remaining g solutions, where g solutions are obtained in advance

through the grid search procedure.

The evaluation criterion of the GA in this study is designed as

mmw (10)

where y and C are the parameter values of an SVM model. L indicates the number
of sub data sets, ¥ indicates the bandwidth of the Gaussian RBF kernel, and C indi-
cates the parameter for regularizing the model’s complexity. E,(y, C) is the misclassi-
fication rate of the model built with parameter y and C for sub data set [.

Each of the sub data sets has the same number of data; these data are randomly
selected from the training data set without replacement. The remaining data are used
for training an SVM model, and the data in the sub data set are used for validating
the model’s performance. The researchers select the number of sub data sets, which is
set to be 5 in our empirical analysis. As the number of sub data sets increases, the op-

timized parameter values of SVM models are expected to gain more generality.
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4. Empirical Analysis

4.1 Data and Variable Selection

In this subsection, our data set is described, and the variable selection method via
the GAM approach is explained in detail. Furthermore, this method is validated by
comparing its performance with those of the corresponding SVM models with several
different sets of input variables via other methods.

The final data set for the empirical analysis consists of the financial ratios of 2,542
externally audited small- and medium-sized manufacturing firms in Korea. Among
them, 1,271 firms filed for bankruptcy and the other 1,271 firms did not file for bank-
ruptcy during the period from 2001 to 2004. The bankruptcy in this paper is defined
as a legally declared inability of a firm to pay its creditors. Following the several lit-
eratures on bankruptcy prediction [14, 16, 17, 27], a balanced sample of bankrupt and
non-bankrupt firms is used.

The data selection process began as we gathered 27 financial ratios of 2,814 bank-
rupt and non-bankrupt firms to conduct an empirical analysis. For bankrupt firms,
we gathered the financial ratios as of one year prior to bankruptcy. Second, we used
the means and standard deviations of the financial ratios of 2,814 companies to stan-
dardize them as Z-values. Third, the observations with Z-values that were beyond the
range of [-3, 3] were considered outliers and were deleted from the data set. Fourth,
in order to equalize the numbers of bankrupt and non-bankrupt firms, we excluded
45 randomly selected non-bankrupt firms from the data set. The definitions of the
initially considered 27 financial ratios are illustrated in Table 1. In the table’s right
column, the corresponding financial categories are notated: “a” corresponds to pro-

“"_ 1
C

ductivity, “b” to profitability, to stability, “d” to activity, and “e” to liquidity.
These categories have been popularly utilized in the accounting area to encapsulate
the meanings of various financial ratio variables.

For the SVM model application, only some significant variables out of the origi-
nal 27 variables are selected. To detect the significant variables, the proposed back-
ward selection method via the GAM was applied. The procedure sequentially drop-
ped a single term with the largest insignificance from the F test for the GAM fitting
and re-fitting until all the remaining terms were significant. Specifically, in the first

conduct of the GAM, the values of df of the additive terms X1, X4, X5, X6, X8, X12,
X13, X14, X19, X22, X24, and X26 were very close to zero. Hence, these variables were
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eliminated from the candidates of input variables. In the second trial, the df value

of the additive term X27 was so close to zero that this variable was excluded from the

candidates. In the third attempt, the df values of all the remaining additive terms in
the model were not near to zero. But the term X17 indicated the largest p-value for

the F test among the remaining terms, so X17 was removed from the candidates. In

this way, the backward selection steps via the GAM were sequentially conducted un-
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til all the additive terms of the GAM model were significant at the level of 0.05.

Table 1. Input Variables for the Analysis

Variable Definition Category
X1 Gross Value Added to Sales a
X2 Gross Value Added to Total Assets a
X3 Growth Rate of Total Assets a
X4 Ordinary Income to Sales b
X5 Net Income to Sales b
X6 Operating Income to Sales b
X7 Costs of Sales to Sales b
X8 Net Interest Expenses to Sales b
X9 Ordinary Income to Total Assets b
X10 Rate of Earnings on Total Capital b
X11 Net Working Capital to Total Assets c
X12 Current Liabilities to Total Assets c
X13 Stockholders” Equity to Total Assets c

X14 Total Borrowings and Bonds Payable to Total Assets c
X15 Total Assets Turnover d
X16 Ordinary Income to Total Assets d
X17 Net Working Capital to Sales d
X18 Stockholders” Equity to Sales d
X19 Ordinary Income to Total Assets d
X20 Depreciation Expense d
X21 Operating Assets Turnover d
X22 Interest Expenses to Total Expenses e
X23 Net Interest Expenses e
X24 Break-Even Point Ratio b
X25 Employment Costs e
X26 Net Income to Total Assets b
X27 Earnings Before Interest and Tax to Sales b

Table 2 shows the output of the last step of backward selection. According to Table 2,

nine variables were finally selected through the backward procedure: X2, X3, X9, X10,

X11, X20, X21, X23, and X25. These nine variables moderately reflect five popular fi-

nancial accounting categories in Table 1. In summary, X2 and X3 are related to pro-
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ductivity, X9 and X10 are related to profitability, X11 is related to stability, X20 and
X21 are related to activity, and X23 and X25 are related to liquidity.

Table 2. Significance of the Additive Terms at the Last Step

Additive Term af F p-value
s(X2) 4.261 40.152 <2.00E-16
s(X3) 5.078 9.972 1.42E-09
s(X9) 2.333 3.075 0.03854

s(X10) 4.542 3.394 0.00625
s(X11) 1.987 5.166 0.00588
s(X20) 6.488 5.452 6.48E-06
s(X21) 1.985 6.409 0.00172
s(X23) 4.635 11.54 2.12E-10
s(X25) 7.092 54.839 <2.00E-16
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Figure 1. Plots of Partial Residuals of the Additive Terms
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Figure 1 shows the degree of linearity or nonlinearity of the relationships be-
tween the input variables and the corresponding additive terms. As the degree of
freedom of the additive function is close to one, the relationship between the corre-
sponding input variable and the value of the additive function comes near to linearity.
As the degree of freedom of the additive function deviates more from one, on the
contrary, the relationship is more prone to nonlinearity.

Seven additional sets of input variables via other variable selection methods
were obtained so that they could be compared with the performance of the model
whose input variables are selected by the GAM. These variables are summarized in
Table 3. The input variables in each group were selected by employing the following
methods: stepwise logistic regression (LR), stepwise MDA, and the GAM approach.
Groups 1, 2, and 3 are composed of input variables by linear-model-based methods.
Group 4 has the input variables selected by the GAM. Groups 4 to 7 have the input
variables by both linear-model-based methods and GAM. And finally, group 8 in-
cludes all the input variables in the data.

A total of eight groups of selected variables were evaluated by comparing the

performances of the corresponding SVM models.

Table 3. Groups of the Input Variables by the Selection Methods

Group Description Variables
1 Selected by stepwise LR X2, X3, X7, X9, X12, X20, X21, X22, X25
2 Selected by stepwise MDA X2, X3, X9, X12, X15, X20, X21, X22, X23, X25
3 Selected by Stepwise LR or MDA ;(%'5 X3, X7, X9, X12, X15, X20, X21, X22, X23,

4 Significant variables from GAM X2, X3, X9, X10, X11, X20, X21, X23, X25

X2, X3, X7, X9, X10, X11, X12, X20, X21, X22,
X23, X25

X2, X3, X9, X10, X11, X12, X15, X20, X21, X22,
X23, X25

X2, X3, X7, X9, X10, X11, X12, X15, X20, X21,
X22, X23, X25

8 All the variables from the data X1-X27

5 Variables in Group 1, 4
6 Variables in Group 2, 4

7 Variables in Group 1, 2, 4

4.2 Tuning the SVM Models by the Sequential Method

The next step is to estimate the approximate values of two parameters of the

SVM model, 7 and C, by the grid search. The grid search was conducted on expo-
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nentially growing sequences [27°, 2%, 27, 22, 27!, 2°] for 7, and [2°, 2', 27,
23, 2%, 2°]for C using 5-fold cross validation.

Figure 2 shows the contours of misclassification rates of 8 SVM models from the
grid search. In Figure 2, SVM(#) denotes the SVM model with the input variables of
Group # in Table 3. The darkness of the color indicates the level of misclassification
rate. The misclassification rates generated by the corresponding grids of the two pa-

rameters, 7 and C, differ in the ranges from about 0.20 to 0.34.

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
gamma gamma gamma

SVM(4) SVM(5) SVM(6)

0.32
0.30
0.28
0.26

0.24

0.22

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
gamma gamma gamma

SVM(7) SVM(8)

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
gamma gamma

Figure 2. Grid search on 27° to 2 for y and 2° to 2° for C

Table 4 shows the best among the given sets of 7 and C for each SVM model,

which is estimated by the grid search. They generate the lowest misclassification rate
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for each SVM model. We can see that there are differences in the estimated best val-
uesof 7 and C by the SVMs built with different input variables.

Table 4. Estimated Values of the Parameters

Model e C
SVM(1) 27 2*
SVM(2) 273 2!
SVM(3) 27 24
SVM(4) 27 2!
SVM(5) 94 o
SVM(6) 2 22
SVM(7) 23 20
SVM(8) 27 2?

To compare the performance of the SVM models built by the different sets of pa-
rameters in Table 4, a holdout validation was conducted. We first split the data into
train and test data sets in a proportion of 8 : 2. The train data set was used to build the
SVM models, and the test data set was used to evaluate the performance of the SVM
models. This process was repeated 100 times. Figure 3 and Table 5 depicts the results
of the holdout validation.

0.24

0.22

0.20
I
|
|

o

0.18

SVM(1) SVM(2) SVM(3) SVM4) SVM(5) SVM(6) SVM(7) SVM(8)

Figure 3. Box plots of Misclassification Rates of the SVM Models

The box plots in Figure 3 show the respective distributions of the misclassifica-
tion rates of 8 SVM models. The box plots of SVM(5) and SVM(8) show relatively
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high level of misclassification rates in comparison with the others, which implies that
SVM(5) and SVM(8) are inferior to the other SVM models in terms of classification
power. There seems to be little difference in the misclassification rates among the

other models.

Table 5. Summary Statistic of Misclassification Rates of 8 SVM Models

Model N Minimum Maximum Mean Std. Deviation
SVM(1) 100 0.1937 0.2566 0.2212 0.0124
SVM(2) 100 0.1868 0.2478 0.2199 0.0124
SVM(3) 100 0.1898 0.2616 0.2232 0.0125
SVM(4) 100 0.1790 0.2488 0.2181 0.0122
SVM(5) 100 0.2006 0.2586 0.2273 0.0131
SVM(6) 100 0.1888 0.2468 0.2210 0.0118
SVM(7) 100 0.1927 0.2439 0.2200 0.0119
SVM(8) 100 0.2173 0.2753 0.2431 0.0118

Table 5 shows that SVM(4) has the lowest mean of misclassification rates; how-
ever, before we confirm that the model outperforms the other ones, we need an addi-
tional analysis to check if there exist statistically significant differences among the
misclassification rates of the 8 SVM models. Table 6 shows the results of the paired t-

tests between the misclassification rates of SVM(4) and each of the other ones.

Table 6. Results of Paired t—Tests

Paired Differences
Std. 95% Confidence Interval

Mean Std. Error of the Difference t df SIg'
Dev. (2-tailed)
Mean Lower Upper

SVM(1)-SVM(4) 0.0031 0.0095 0.0009 0.0012 0.0050 32812 99  0.0014
SVM(2)-SVM(4) 0.0018 0.0104 0.0010 -0.0003 0.0038 1.6976 99  0.0927
SVM(3)-SVM(4) 0.0051 0.0115 0.0012 0.0028 0.0074 44486 99  0.0000
SVM(5)-SVM(4) 0.0092 0.0117 0.0012 0.0069 0.0115 7.8865 99  0.0000
SVM(6)-SVM(4) 0.0029 0.0095 0.0010 0.0010 0.0048 3.0360 99  0.0031
SVM(7)-SVM(4) 0.0019 0.0102 0.0010 -0.0002 0.0039 1.8294 99  0.0704
SVM(8)-SVM(4) 0.0250 0.0118 0.0012 0.0227 0.0274  21.2323 99  0.0000

From the results in Table 6, SVM(4), SVM model with the input variables selected
by the GAM approach, significantly outperforms most of the alternatives under the
significance level of 0.05 while it weakly performs better than SVM(2) and SVM(7).
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This implies that the GAM is a promising approach for the input variable selection
that can replace the other linear methods.

The next step of the proposed method is to make the GA search out the spaces of
two parameters 7 and C to find the optimal parameter values. The values of the pa-
rameters in Table 4 are just the best ones among the discrete values given by the au-
thors, not the global optimal values. Hence, it is necessary to search a wide space of
real numbers in order to get the optimal values. The GA is employed for the purpose
of searching the global optimum.

The parameter values estimated by the grid search can be used for a part of the
initial population chromosomes in the GA step. By doing this, we can save the search-
ing time by the GA, and increase the probability of finding out the optimal solutions.
In this study, 5 pairs of parameter values showing the best performance among the 16
alternative pairs of parameters in Table 7 are used for the initial chromosome values
in the population. The performance level is measured using the mean of the misclas-

sification rates.

Table 7. Performance of the Set of Parameter Values of SVM by the Grid Search

Set v C Mean of Misclassification Rate
1 0.1250 2 0.2070
2 0.2500 4 0.2085
3 0.1250 4 0.2113
4 0.0625 16 0.2117
5 0.2500 8 0.2121
6 0.0625 8 0.2121
7 0.0625 4 0.2121
8 0.2500 2 0.2129
9 0.0313 16 0.2133
10 0.1250 8 0.2148
11 0.1250 16 0.2164
12 0.0625 2 0.2180
13 0.0313 8 0.2188
14 0.2500 16 0.2243
15 0.0313 4 0.2251
16 0.0313 2 0.2381

With the modified GA in use, the chromosome structure of the model is de-
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scribed as follows. Each chromosome is composed of two kinds of genes representing
7 and C. The genes for parameters 7 and C are set to be positive real numbers in
the ranges of [0, 1] and [1, 16] respectively. To search for the optimal values, we set
the population size to be 50, among which 5 chromosomes are given from the grid
search and 45 chromosomes are randomly generated. While running the GA algo-
rithm, the rates of crossover and mutation are set to be 0.2 for both 7 and C. The
search algorithm is designed to repeat 100 times.

The process of optimizing two parameters C and 7 over 100 generations by the
GA is shown in Figure 4. We can see the initial values of the parameters are converg-

ing to a certain set of values over 100 generations.
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Figure 4. Process of Optimizing by the GA
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Figure 5. Best and Mean Evaluation Values over 100 Generations in the case of SVM (GA1)
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Figure 5 illustrates the trend of the best and the mean of evaluation values, the
mean of misclassification rates, in the population over 100 generations in case of SVM
(GA1). SVM (GA1) is the SVM model with the grid search. The upper line indicates
the mean of evaluation values in the population, and the lower line indicates the best
of evaluation values in the population. We note that the best evaluation value re-
mains constant from about the 12th generation through 100th generation, which im-
plies that the convergence has been made in an early stage.

On the other hand, Figure 6 shows the case of SVM (GA2). SVM (GA2) is the
SVM model without the grid search. Comparing it with Figure 5, we can tell that the
convergence of the best evaluation values is made in a very late stage, around at the
120th generation. This result indicates that conducting the GA step after the grid
search is more efficient to find out the optimal solutions than conducting the GA step

without the preliminary grid search.
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Figure 6. Best and Mean Evaluation Values over 200 Generations in the case of SVM (GA2)

Table 8 shows the optimal estimates of parameters 7 and C for the three SVM
models. Here, 7 and C of SVM (grid) are estimated by the grid search (same as the
values for SVM(4) in Table 4), those of SVM (GA1) are optimized by using both the
grid search and the GA (the suggested modified GA), and those of SVM (GA2) are
optimized only by the GA without the preliminary grid search (the standard GA). In
order to optimize the parameter values of SVM (GA2), we set the searching space to

be real numbers between 2°and 27 for 7, and between 2°and 2° for C. In addi-
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tion, we set the number of generations to be 200, which are twice as many generations
as for the SVM (GA1l).

Table 8. Estimated Values of the Parameters

SVM Model 7 C
SVM (grid) 273 2!

SVM (GA1) 0.1008534 2.52947
SVM (GA2) 0.0411414 22.11387

After optimizing the values of the two parameters of SVM, we performed a
holdout validation once again to compare the performances of the SVM models built
by three different sets of values in Table 8. A proportion of 8 to 2 was applied to the
ratio of the train data set and the test data set. Table 9 shows the results of the holdout

validation.

Table 9. Summary Statistic of Misclassification Rates of SVM Models

SVM Model N Minimum Maximum Mean Std. Deviation
SVM (grid) 100 0.1849 0.2458 0.2168 0.0122
SVM (GA1) 100 0.1878 0.2439 0.2158 0.0121
SVM (GA2) 100 0.1898 0.2458 0.2172 0.0106

According to Table 9, it is clear that SVM (GA1) is superior to both SVM (grid)
and SVM (GA?2) in the sense of a smaller mean of misclassification rates, which im-
plies that the SVM model using both the grid search and the GA shows more accurate
prediction power on the average than the SVM model using only one method of the
two. Note that SVM (GAL1) still outperforms SVM (GA2) even though the algorithm
iterations in SVM (GA2) were increased; this increase simply caused an increase in
the searching time. This result confirms that SVM (GA1) performs better than SVM
(GA2) in a moderately finite searching time. To statistically assure this claim, how-
ever, it may be necessary to conduct additional paired t-tests between the mean mis-
classification rates of SVM (GA1) and each of the other two SVM models. Table 10
shows the results of the paired t-tests.

Table 10 clearly shows that there exist statistically significant differences between

the mean of misclassification rates of SVM (GA1) and those of the other two models,
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SVM (grid) and SVM (GA2), under the significance level of 0.05. The sequential
searching method via the combination of the grid search and the GA significantly
outperforms the exclusive method either by the grid search or the conventional GA in

this empirical analysis.

Table 10. Results of Paired t—Tests between SVM Models

Paired Differences

95% Confidence
Std. Std. Error Interval of the Sig.
Mean Dev. Mean Difference t df (2-tailed)

Lower Upper
SVM (grid)-SVM (GA1) 0.0010 0.0027 0.0003  0.0004 0.0015 3.6340 99  0.0004
SVM (GA2)-SVM (GA1) 0.0014 0.0058 0.0006  0.0002 0.0025 2.3561 99 0.0204

5. Conclusions

This paper suggests a hybrid tuning method for the architecture of SVM models,
which employs the GAM, the grid search, and the GA in sequence. The GAM, a
nonlinear model, was applied to the input variable selection for building nonlinear
SVM models. It is shown that the GAM is superior to other input variable selection
methods in terms of misclassification rates. The grid search is used for estimating the
approximate values of two parameters for the SVM model using RBF kernel function.
It reduces the searching space so that the GA can find optimal parameter values in a
reasonable amount of time. The GA then investigated the space to detect the optimal
parameter values of the SVM models.

The suggested method has some advantages in building SVM models. First, by
using the GAM, the method can find out which variables have significant linear or
nonlinear pattern for classifying data. Second, by using both the grid search and the
GA, the method can perform a global search to obtain the optimal parameter values
in a relatively short time.

Applying the suggested tuning method to a bankruptcy prediction problem, we
empirically showed that the SVM model tuned by the suggested method significantly

outperformed the other SVM models. The method can serve as a fine-tuner for the
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SVM model to enhance its predicting power.

In spite of the contributions from the newly suggested method, there are a couple
of notable limitations we would like to mention. First, our data set for the empirical
analysis is somewhat limited. The data set includes risky small- and medium-sized
manufacturing firms in a specific country during a specific period. To generalize the
merit of the suggested tuning method, this technique needs to be applied to other
versatile data sets in various areas. Second, the variable selection results via the GAM
can vary. Although the GAM captures the nonlinear relationships among variables,
the literature reports that the variable selection results through this method are
somewhat unstable. The significance of the selected variables via the GAM can be
changed by including new data into the existing data set or by removing some data
from the existing set. A robust method leading to consistently stable variable selec-
tion by the GAM needs to be developed in the future.
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