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Abstract

Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic

regression model is one of the popular methods of credit scoring to predict the default probability; however,

it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low

computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to

logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random

forests. We compare these methods via a simulation study and illustrate them through a German credit

dataset.
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1. Introduction

Amajor concern of credit card companies and private banks is how to evaluate each customer’s credit

risk. As the demands for loan and industrial competition increase, an objectively and automatically

operated risk assessment tool is required. Credit scoring is used to assess customers’ credit risks

by predicting the likelihood of a customer default in the near future. It is mainly used to make

a decision or establish strategies for credit-related companies, see Mays (2001) and Thomas et al.

(2002) for various applications of credit scoring. There are two types of decisions. The first is for

customers who apply for a credit loan or a credit card; companies determine who they approve

for credit, how much credit they give, and the appropriate interest rate. The second is for existing

customers; companies select profitable customers to increase credit limits or renew the loan contract.

These are called application score(AS) and behavioral score(BS), respectively. In addition there are

many credit scores in AS and BS. Although the purposes, available information and strategies of

different credit scores are different, the main focus of credit scoring is a two-class classification

problem.
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Many statistical models or machine learning methods are used to classify between good and bad

customers. Logistic regression is most popular for credit scoring since it has advantages in interpre-

tation and computing costs; however, it cannot detect a nonlinear relationship between the response

variable and predictors because it is based on the assumption that the response variable is related

to the linear combination of predictors. Although there are several methods that can detect the

nonlinear relationship, such as classification and regression trees(CART) and neural network, they

typically have poor interpretation ability and sometimes poor performance compared to logistic

regression, see Breiman (1994) for other disadvantages of these methods.

In this paper we consider using a generalized partially linear additive model to improve performance

in terms of credit scoring. There are several ways of fitting the model. One is to apply ordinary

backfitting with profiling. The ordinary backfitting technique was proposed by Buja et al. (1989) as a

way of fitting a nonparametric additive model. However, its theoretical properties when applied to a

generalized partially linear additive model is unknown. The smooth backfitting technique proposed

by Mammen et al. (1999) is known as a powerful technique for fitting structured nonparametric

models. Yu and Lee (2010) studied smooth backfitting with profiling as a way of fitting the model

under study; however, its practical implementation is computationally quite expensive. In addition,

Yu and Lee (2010) failed to give numerical properties of the method. In this paper we suggest to use

the regression spline technique. In a simulation and a real data analysis, we compare the proposed

method with logistic regression, CART, and also some ensemble methods such as bagging, boosting

and random forests.

In the next section we introduce the generalized partially linear additive model and the regression

spline method to fit the model. We also discuss some properties of the estimators of the model

parameters. In Section 3, we review the three ensemble methods briefly. In Section 4, we give

the results of the simulation study and the real data analysis. We finish the paper by giving some

concluding remarks in Section 5.

2. Generalized Partially Linear Additive Model

A fully parametric regression model is too restrictive to accommodate various complicated relations

between the response and predictors. It easily fails when the true model is far from the assumed

model. A fully nonparametric regression model is flexible; however, its usage is sometimes lim-

ited, particularly in the case where there are qualitative predictors. A semiparametric model may

be a good compromise between the two extremes. With semiparametric modeling, one may put

qualitative predictors (or those whose effects on the response are believed to be linear) into a para-

metric part, and the others into a nonparametric part. The generalized partially linear additive

model(GPLAM) is such a model.

With the i.i.d. observations (Y i,Xi,Zi), . . . , (Y n,Xn,Zn) of a random vector (Y,X,Z) where

X = (X1, . . . , Xp)
⊤ ∈ Rp and Z = (Z1, . . . , Zd)

⊤ ∈ Rd, GPLAM assumes

E
(
Y i|Xi = x,Zi = z

)
= g−1

(
β⊤x+

d∑
j=1

mj(zj)

)
(2.1)

for a link function g which is strictly increasing. Here, β is the p-vector of unknown parameters

and mj(·)’s are unknown functions such that Emj(Zj) = 0 for j = 1, . . . , d. The link function g

allows one to apply the model to a discrete response variable as well. For a continuous response Y ,

one may use the identity link g(u) = u, and in that case the model (2.1) reduces to the partially
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linear additive model. Two important examples of discrete response variables are Y ∈ {0, 1} and

Y ∈ {0, 1, 2, . . .}. In those cases, one typically uses the logit link g(u) = log(u/(1− u)) and the log

link g(u) = log(u), respectively.

We consider the quasi-likelihood approach (Severini and Staniswalis, 1994) to estimate the para-

metric part β and the nonparametric additive function m(z) = m1(z1) + · · ·+md(zd). It requires

a modeling of the conditional variance v(x, z) = var(Y |X = x,Z = z) in terms of the conditional

mean f(x, z) ≡ E(Y |X = x,Z = z). If one assumes v(x, z) ≡ V (f(x, z) for a known function V ,

then the quasi-likelihood function Q(µ, y) is defined by

∂

∂µ
Q(µ, y) =

y − µ

V (µ)
, (2.2)

and the quasi-likelihood is given by

Ln(β,m) = n−1
n∑

i=1

Q
(
g−1

(
β⊤Xi +m

(
Zi
))

, Y i
)
. (2.3)

The case where the conditional distribution of Y given X = x, Z = z belongs to an exponential

family may be put into the quasi-likelihood framework. If the conditional distribution has a density

of the form

pdfY |X,Z(y|x, z) = exp
[
a(ϕ)−1 {yθ(x, z)− b(θ(x, z))}+ c(y, ϕ)

]
for some known functions a(·), b(·), c(·, ·), then f(x, z) = b′(θ(x, z)) and v(x, z) = a(ϕ)b′′(θ(x, z)) =

a(ϕ)b′′ ◦ (b′)−1(f(x, z)). If we let V (µ) = a(ϕ)b′′ ◦ (b′)−1(µ), then Q(µ, y) = a(ϕ)−1{y(b′)−1(µ) −
b ◦ (b′)−1(µ)} satisfies (2.2). If we take the canonical link g = (b′)−1, then the likelihood function

at (2.3) reduces to

Ln(β,m) = n−1
n∑

i=1

Y i
(
β⊤Xi +m

(
Zi
))

− b
(
β⊤Xi +m

(
Zi
))

up to a constant factor.

To estimate the nonparametric additive function m(z), we apply the regression spline technique.

Yu et al. (2008), and Yu and Lee (2010), respectively, discussed fitting GAM(generalized additive

models) and by kernel smoothing. Although the kernel smoothing techniques of fitting GAM and

GPLAM have very nice theoretical properties, they are known to be computationally expensive in

a high-dimension.

Given a fixed knot sequence ξ1, . . . , ξM , a function is called a polynomial spline of order q if it is a

piecewise polynomial of order q on each of the intervals,

(−∞, ξ1], [ξ1, ξ2], . . . , [ξM−1, ξM ], [ξM ,∞),

and has (q− 1) continuous derivatives at the knots. Let Bj,k for 1 ≤ k ≤M + q+1 be the B-spline

basis functions for the component function mj , and put Bj = (Bj,1, . . . , Bj,M+q+1)
⊤. A function µj

in the space of polynomial spline of order q can be represented by µj(zj) =
∑M+q+1

k=1 γj,kBj,k(zj) =

γ⊤
j Bj(zj) for some constant vector γj . Plugging this expression into the quasi-likelihood at (2.3)

gives

ℓ(β,γ1, . . . ,γd) = n−1
n∑

i=1

Q

(
g−1

(
β⊤Xi +

d∑
j=1

γ⊤
j Bj

(
Zi

j

))
, Y i

)
. (2.4)
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We maximize the quasi-likelihood ℓ(β,γ1, . . . ,γd) at (2.4) with respect to β and γ1, . . . ,γd. If we

denote the maximizer of ℓ(β,γ1, . . . ,γd) by β̂ and γ̂j , then estimators of mj after the normalization

are given by

m̂j(xj) = γ̂⊤
j Bj(zj)− n−1

n∑
i=1

γ̂⊤
j Bj(Z

i
j), 1 ≤ j ≤ d. (2.5)

The theoretical properties of the estimators β̂ and γ̂j have been established in Wang et al. (2011).

In fact, under certain conditions it follows that∫
[m̂j(zj)−mj(zj)]

2 pZj (zj) dzj = Op

((
Mn−1 logn

) 1
2

)
, 1 ≤ j ≤ d,

where pZj denotes the marginal density function of Zj . For the estimator β̂, it holds that
√
n
(
β̂ −

β) → N(0,Σ) for some positive matrix Σ.

3. Ensemble

Ensemble is a machine learning technique that combines many weak learners to improve prediction

accuracy. A weak leaner is a procedure that is slightly better than random prediction. An example

is simple tree. A simple tree has no structure so that it may detect possible nonlinear features of the

predictors. One disadvantage of the method is that it has low interpretability, which is an obstacle

for real data application. In this paper, we consider three ensemble methods based on the simple

tree: bagging, logit-boosting, and random forests.

3.1. Bagging

The idea of bagging is to produce weak learners based on bootstrap samples, see Breiman (1996). In

classification one seeks a fine learner to predict the class of a point x based on a training dataset S.
Let S = {(Y 1,X1), . . . , (Y n,Xn)} be the training dataset, where Y i ∈ {1, . . . , J} denotes the class

where Xi ∈ Rp belongs to. If one has a sequence of training sets {Sk} and weak learners f(·,Sk),

then one can aggregate the weak learners f(·,Sk) by majority voting: classify a test point x by

assigning the class which is most frequent among those f(x,Sk) predict. Bagging uses bootstrap

samples {Sk} obtained from the training set S. Here is the algorithm of bagging.

Bagging Algorithm

(1) Draw bootstrap samples Sk, 1 ≤ k ≤ K, from a training set S;

(2) Fit a weak learner to Sk, 1 ≤ k ≤ K, to find f( · ,Sk). In this paper, we consider the regression

decision tree as a weak learner;

(3) Classify x by majority voting, i.e., fbagg(x,S) = argmax
1≤j≤J

∑K
k=1 I [f(x,Sk) = j].

3.2. Logitboost

Boosting is a generic term for improving the accuracy of any machine learning algorithm. Among

the boosting, Adaboost (Freund and Schapire, 1996) is a popular boosting technique. It is known

to be stronger than bagging in most cases. Logitboost (Friedman et al., 2000) is for two-class
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classification problems and is a statistical version of Adaboost to fit additive logistic regression

models using maximum likelihood. The algorithms is stated below.

Logitboost Algorithm

(1) Input a training set S = {(Y 1,X1), . . . , (Y n,Xn)}, where Y ∈ {−1, 1} and X ∈ Rp;

(2) Initialize the weights w
(0)
i ≡ 1/n, 1 ≤ i ≤ n, the committee function F (0)(x) = 0 and the

probabilities p(0)(x) = P (Y = 1|X = x) = 1/2;

(3) Repeat k = 1, . . . ,K

(a) Compute the weights w
(k)
i = p(k−1)(Xi)[1 − p(k−1)(Xi)], 1 ≤ i ≤ n, and the working

responses Zi = [(Y i + 1)/2− p(k−1)(Xi)]/w
(k)
i ;

(b) Fit a weak leaner to the dataset {(X1, Z1), . . . , (Xn, Zn)} to find a classifier f (k) by weighted

least squares regression with the weights w
(k)
i . In this paper, we consider the regression

decision tree as a weak learner;

(c) Update F (k−1)(x) by F (k)(x) = F (k−1)(x)+f (k)(x)/2 and p(k−1)(x) by p(k)(x) = eF
(k)(x)/

[eF
(k)(x) + e−F (k)(x)];

(4) Output the final classifier fLgtBoost(x,S) = sgn(F (K)(x)).

3.3. Random forests

Random forest proposed by Breiman (2001) is a collection of decision trees to improve classification

power. A random forest consists of tree-based classifiers {f( · ,Θk) : k ≥ 1}, where Θk are indepen-

dent identically distributed random vectors. A test point x is classified by majority voting: each

tree makes a single vote f(x,Θk) and the most popular class is selected.

Random Forest Algorithm

(1) Input data set S = {(Y 1,X1), . . . , (Y n,Xn)}, where Y ∈ {1, . . . , J} and X ∈ Rp. Choose the

number of trees K and positive integers d≪ p and ℓ.

(2) Repeat k = 1, . . . ,K

(a) Get a boostrap sample Sk from the training set S.

(b) At each node, choose d input variables at random among {X1, . . . , Xp}. Based on these

variables and Sk, find the best split.

(c) The tree is grown until each terminal node contains no more than ℓ training sample points.

There is no pruning. Let f(·,Sk) denote the constructed tree.

(3) Output the classifier fRandFrst(x,S) = argmax
1≤j≤J

∑K
k=1 I [f(x,Sk) = j].

4. Numerical Experiment

4.1. Simulation study

The main objective of this section is to compare the GPLAM approach and the three ensemble

methods in two-class classification. With the GPLAM approach, one predicts Y = 1 for an observed
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point (X,Z) = (x, z) if the associated predictor vectors give a value greater than 1/2 for the

estimator of the conditional mean E(Y |X = x,Z = z). To compare different classifiers, we consider

the misclassification error as a measure of performance. It is defined as the ratio of the number of

misclassified observations with respect to the total number of observations in the test dataset:

ME =
(number of misclassified observations in test dataset)

(total number of observations in test dataset)
. (4.1)

Another measure of performance is the AUROC which is defined as the area under the ROC(Receiver

Operation Characteristic) curve. Higher value of AUROC means better performance. We also

consider the KS(Kolmogorov-Smirnov) statistic, which measures the maximal difference between

the cumulative distribution functions of “good” and “bad”. To be specific, it is defined as

KS = max
x

|FG(x)− FB(x)|, (4.2)

where FG denote the distribution function of the sample classified as “good”, and FB the one for the

sample classified as “bad”. In credit scoring it is widely accepted that, if the value of KS statistic

is smaller than 0.2, the model is useless; if it is from 0.2 and to 0.4, the model is fair; if it is from

0.4 to 0.6, the model is good; if it is from 0.6 to 0.75, the model is awesome; if it is greater than

0.75, the model is too good to be true.

In the simulation study, we generated 100 training datasets of size n = 300, and 500 observations

for a test dataset from the model Y ∼ Bernoulli(g(β⊤X + γ⊤m(Z))) for some parameter values

β ∈ R7 and γ ∈ R4, where g(u) = exp(u)/(1 + exp(u)) and m(z) = (m1(z1), . . . ,m4(z4))
⊤.

This means we chose p = 7 and d = 4 in the GPLAM (2.1). We considered three different

scenarios with the model. One is the case where there are only linear effects. This corresponds

to a parametric logistic linear model. Another is the case where both linear and nonlinear effects

exist in the model, which results in a semiparametric model. The last one is the case where

only nonparametric effects enter the model, which is a nonparametric generalized additive model.

For the first case, we put β = (0.5, 0.1,−0.5,−0.5, 0.3,−1, 0.5)⊤ and γ = 0. For the second,

we chose β = (0.5, 0, 0,−0.5, 0,−1, 0.5)⊤ and γ = (3, 0, 0,−1)⊤. For the last one, we took β =

0 and γ = (3,−1, 1,−1)⊤. For the observations of the predictors Xj , we generated X1 from

Bernoulli(0.7), X2 from Bernoulli(0.3) independently of X1, and (X3, . . . , X7) from the multivariate

normal distribution independently of (X1, X2) with mean vector (0.5, 1, 1.5, 2, 2.5)⊤ and covariance

matrix V = (vij) where vij = 0.2 for i ̸= j and 1 for i = j. For the predictors Zj , we generated them

from the uniform distribution on [0, 1]4. The nonparametric functions mj were chosen as follows:

m1(z1) = sin(3z1), m2(z2) = sin(3z22), m3(z3) = cos(3z3), m4(z4) = cos(3z24). The smoothing

parameter M in fitting the GPLAM was chosen by the GCV criterion.

The results obtained from the 100 pseudo training samples of size n = 300 are contained in Table

4.1–4.3. The values in Table 4.1 are the average of ME, defined at (4.1), across the 100 pseudo

training samples. The box plots for the 100 values of ME are also displayed in Figure 4.1. Table 4.2

and Table 4.3 give the average values of the AUROC and KS statistics, respectively. In the tables

and the figure, we also included the results of fitting a parametric logistic linear model(PLM) and

of CART. In the first scenario where only linear effects enter the model, the parametric approach

shows the best performance as expected. The GPLAM approach is the next, and CART is the

worst. In the second and third scenarios where nonparametric effects are present, the GPLAM

gives the best performance among all, and the three ensemble methods outperform the parametric

logistic regression approach and CART.
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Table 4.1. Average misclssification errors

Scenario #1 Scenario #2 Scenario #3

PLM 0.28102 0.29920 0.29632

CART 0.35534 0.34048 0.31242

GPLAM 0.28798 0.25728 0.25192

Random Forest 0.30562 0.28400 0.26936

Logitboost 0.29548 0.27114 0.25628

Bagging 0.31410 0.29164 0.27532

Table 4.2. Average values of AUROC statistic

Scenario #1 Scenario #2 Scenario #3

PLM 0.77539 0.74902 0.68698

CART 0.66516 0.68879 0.66597

GPLAM 0.76665 0.80495 0.77161

Random Forest 0.73560 0.76843 0.73501

Logitboost 0.75459 0.78966 0.76168

Bagging 0.72260 0.75296 0.72431

Table 4.3. Average values of KS statistic

Scenario #1 Scenario #2 Scenario #3

PLM 0.43396 0.39145 0.30667

CART 0.28789 0.32794 0.30148

GPLAM 0.41892 0.48022 0.43230

Random Forest 0.37647 0.42766 0.37536

Logitboost 0.40022 0.45613 0.41499

Bagging 0.35653 0.40151 0.35964

4.2. German credit data

The German credit dataset consists of one thousand observations on twenty one variables. Among

the twenty one variables, one is the response variable taking values 0 and 1, which indicate a ‘good’

and ‘bad’ customer, respectively. There are twenty predictors, among which seven are numeric

and thirteen are qualitative attributes. Some predictors have long-tailed distributions, so they are

log-transformed. We used 10-fold cross-validation to calculate the misclassification errors. That is,

we split the whole dataset into ten groups so that each group has one hundred observations, put

aside one group as a test dataset, construct a classifier based on the remaining dataset as a training

sample, and then apply the resulting classifier to the test data we put aside. This gives ten values

of ME defined at (4.1). We took the average of the ten values as a performance measure.

The results were 0.249 for PLM, 0.268 for CART, 0.239 for GPLAM, 0.235 for random forest, 0.247

for Logitboost, and 0.237 for bagging. The GPLAM, random forest and bagging methods show

comparable performance for this particular dataset. One advantage of the GPLAM approach in

comparison with the three ensemble methods is that it enables us to estimate the effect of each

predictor. The ensemble methods do not have the advantage since they are not based on a structured

model.

5. Conclusion

In this paper, we compare several classification methods by simulation and real data analysis. The

methods can be applied to credit scoring. Our study suggests that the GPLAM approach has the
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Figure 4.1. Box plots of misclassification errors.

best performance and the three ensemble methods of bagging, logitboost and random forest, are

superior to the parametric logistic approach and the traditional CART, when nonlinear effects are

present in the model. It also shows that the GPLAM approach is comparable to the parametric
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approach when the parametric model assumption holds. When one chooses a method for credit

scoring, one should consider not only the classification performance but also the interpretability of

the effects of the predictor. In this sense, the GPLAM approach seems the best choice since it is

based on an estimated model that involves the effects of all predictors.
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