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In this article, several types of hybrid forecasting models are suggested. In particular, hybrid 
models using the generalized additive model (GAM) are newly suggested as an alternative to those 
using neural networks (NN). The prediction performances of various hybrid and non-hybrid models 
are evaluated using simulated time series data. Five different types of seasonal time series data related 
to an additive or multiplicative trend are generated over different levels of noise, and applied to the 
forecasting evaluation. For the simulated data with only seasonality, the autoregressive (AR) model 
and the hybrid AR-AR model performed equivalently very well. On the other hand, if the time series 
data employed a trend, the SARIMA model and some hybrid SARIMA models equivalently 
outperformed the others. In the comparison of GAMs and NNs, regarding the seasonal additive trend 
data, the SARIMA-GAM evenly performed well across the full range of noise variation, whereas the 
SARIMA-NN showed good performance only when the noise level was trivial. 
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1. Introduction

Recently, data are exponentially increased 
with the emergence of various types of informa-

tion channels like Social Networking Services. As 
the data storage techniques are developed, high 
capacity data or big data analysis becomes avail-
able. Some meaningful implications are often 
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derived from the big data analysis. In particular, 
versatile time series type big data are cumulated in 
numerous institutions. In this study, we consider 
five different types of time series data simulation, 
and try to find appropriate forecasting models 
regarding each type of simulated time series data. 
If some real time series data have a similar pattern 
with one of these five simulated time series data, 
we may consider applying the recommended 
models from the simulation results. 

There have been many attempts to model 
seasonal and trend time series data. In terms of 
modeling the patterns of the underlying time 
series, two types of approach, namely linear and 
nonlinear, can be categorized. Firstly, a type of 
linear model known as the seasonal autoregressive 
integrated moving average (SARIMA) was pro-
posed by Box and Jenkins (1976), and this has 
been commonly applied over the past several de-
cades. After this, nonlinear models such as neural 
networks (NN or NNs) have received consider-
able attention due to their ability to capture non-
linear patterns in the underlying series (Adya and 
Collopy, 1998; Bodyanskiy and Popov, 2006; Freitas 
and Rodrigues, 2006; Barbounis and Teocharis, 
2007; Celik and Karatepe, 2007).  

On the other hand, hybrid modeling approa-
ches combining linear and nonlinear models have 
been proposed to utilize the merits of both types 
of model. Tseng et al. (2002) suggested combin-
ing NNs and SARIMA in such a way that the 
forecasts and residuals from the SARIMA model 
are applied to input variables of NNs. Similarly, 
Zhang (2003) suggested a hybrid approach using 

NNs and ARIMA, wherein NNs are applied to 
model the residuals from the ARIMA model. 
Although these studies have commonly argued 
for the superiority of a hybrid model over the in-
dividual models, extensive comparison of the pre-
diction accuracy between such models has not 
been previously studied. Furthermore, existing 
hybrid approaches are limited in that they only 
combine NNs and ARIMA type models. 

Recently, a nonparametric additive model 
has been widely applied in nonlinear time series 
data forecasting (Prada-Sánchez and Febrero- 
Bande, 1997; Dominici et al., 2002; Berg, 2007). 
Since in this model the response variable is al-
lowed to have many types of distribution (e.g. 
Normal, Poisson, Logistic), it tends to be re-
ferred to as a generalized additive model (GAM). 
GAMs differ from linear models in that they are 
capable of adjusting for the nonlinear confound-
ing effects of seasonality and trend. Moreover, 
GAMs are unlike NNs in that they do not re-
quire data preprocessing approaches. Nelson et al. 
(1999) argue that the forecasting error of NNs 
can be reduced via detrending or deseasonaliza-
tion. However, many researchers have recog-
nized the difficulty in distinguishing seasonality 
from non-seasonal components and in modeling 
trend patterns (Nelson and Plosser, 1982; Ittig, 
1997). Unless the trend or seasonality is speci-
fied correctly, preprocessing may not guarantee 
better prediction results. Due to these strengths 
of GAMs over NNs and linear models, hybrid 
models employing a GAM are newly suggested 
for forecasting seasonal and trend time series da-
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ta in this article. 
Several types of seasonal time series data 

with additive or multiplicative trends are gene-

rated over different levels of noise, which are then 

applied to an evaluation of forecasting accuracy, 

comparing between the suggested hybrid models 

and the other competing models. For the simu-

lated data with only seasonality without any trend, 

the AR model and the hybrid AR-AR model 

equivalently performed very well, whereas the 

SARIMA model and the SARIMA related hybrid 

models showed poor performances. On the other 

hand, when using a time series data set employing 

a linear or a quadratic trend, the SARIMA model 

and some of its hybrid models both outperformed 

the other competitors. In the comparison between 

GAMs and NNs, both the SARIMA-GAM and 

SARIMA-NN hybrid models tended to show very 

good prediction performances for the multipli-

cative trend models. Regarding the additive trend 

model, the SARIMA-GAM performed well for 

the full range of noise variation, whereas the 

SARIMA-NN showed good performance only 

when the noise level was trivial. 

The remainder of this article is arranged as 

follows. Section 2 briefly defines the mathema-

tical concepts of the linear, nonlinear and hybrid 

models. Likewise, the newly proposed hybrid 

models using the GAM are introduced. The 

design of the simulation studies is explained in 

Section 3. A summary of the simulation analysis 

results is also reported in bulletin form. Some 

concluding remarks are given in Section 4. 

2. Forecasting Models 

In this article, two linear models (AR and 
SARIMA) and two nonlinear models (NN and 
GAM) are compared and evaluated for various 
seasonal and trend time series data. Furthermore, 
a total of 16 hybrid models combining these four 
models will be also examined. In the following 
sub-sections, the concepts and mathematical ex-
pressions of the linear, nonlinear and the hybrid 
models are briefly explained. The new hybrid 
models using GAMs are also introduced.  

2.1 Linear models

The SARIMA model (Box and Jenkins, 
1976) is a popular linear forecasting scheme for 
seasonal and trend time series data. For time 
series data  this model can be represented 

as 


 

  


(1)

where  is usually a Gaussian white noise;  is 

a constant; , , , ,  and  are integers;   
and   of order  and  are the polynomials 
representing autoregressive and moving average 

components, respectively;    and    of 

orders  and  are the polynomials representing 
seasonal autoregressive and moving average 
components, respectively;  and  are orders of 

differencing;   and    are difference 
operators and   is the length of the seasonal 
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cycles. This model is usually known as the 
SARIMA   ×   . 

The SARIMA model is reduced to a sea-
sonal autoregressive moving average (SARMA) 
if  and  are at zero in (1). In particular, the 
SARIMA model becomes autoregressive (AR) if  
, , , and  are all at zero. The AR model 
can be written as

  
 



, (2)

where  is the  th weight and  is the order 

(or the number of lags). This model is often 
expressed as  . 

Estimation and prediction will be carried out 
using the functions in the package of R program. 
Under the Normal distribution assumption on the 
error term, the parameters of the SARIMA model 
can be estimated using maximum likelihood 
methods. The Akaike information criterion (AIC) 
has been applied to the model selection in this 
study. Regarding the AR model, the ‘Yule-Walker’ 
estimation method has been applied using a 
function in R program, which is the default method. 
More detailed explanations on the utilized R 
program functions are given in subsection 3.2.  

2.2 Nonlinear Models

Among various types of NNs models, the 
model of three-layer perceptron NN is employed 
in this study, which has been widely applied in 
empirical studies (e.g., Adya and Collopy, 1998). 
The model is given by the equation 

 
 




  



, (3)

where      ⋯   and 

    ⋯       ⋯   are the path 

coefficients;   is the number of lags and  is 
the number of hidden nodes and ⋅  is the 
activation function in each of hidden nodes. 

The performance of an NN model is known 
to depend on several components, including the 
number of lags, hidden layers and hidden nodes, 
and its activation function (Hansen et al., 1999).  
In this paper, the number of hidden layers is set 
to be one and the logistic function is applied as 
the activation function, which is given by   

  . Regarding the other two components, 
the number of lags and hidden nodes will be 
selected for a given data set for better prediction 
performance via the AIC criterion. 

Another competing nonlinear model consi-
dered in this study is the GAM. Since it was 
initially proposed by Hastie and Tibshirani (1986), 
it has been widely applied to numerous fields, 
including time series data forecasting (Dominici 
et al., 2002). The popularity of GAMs in the area 
of time series forecasting is due to their flexibility, 
in that they allow for nonparametric adjustments 
for the nonlinear confounding effects of sea-
sonality and trend. GAMs also require no assump-
tion of relationships between variables, unlike the 
other linear alternatives. Furthermore, data prepro-
cessing approaches such as detrending or desea-
sonalization are not necessary in GAMs, unlike 
in NNs. 
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The GAM for time series forecasting is 
mathematically expressed by the equation

 
 



, (4)

where  is a constant; ⋅  is the  th additive 

function weight;   is the number of lags;  is 

the  th error term, and  for all  are uncor-

related. 
The function ⋅  can be fitted using 

parametric or non-parametric methods, which pro-
vides a potentially better fit to data than do the 
other methods due to its strength of capturing both 
the linear and nonlinear patterns of underlying 
processes. In this study, the spline function is 
applied for ⋅ . For further details about the 

additive functions in GAMs, refer to Hastie and 
Tibshirani (1986) and Wood (2006). The AIC will 
be again employed for model selection. 

2.3 Hybrid Models

Recently, hybrid models combining the 
strengths of linear and nonlinear schemes have 
been suggested. Tseng et al. (2002) proposed a 
hybrid model combining NNs and SARIMA 
models in which an NN model is applied to 
forecast  by using residuals from SARIMA 

and observations;  ⋯ . Zhang (2003) sug-

gested a hybrid model from NN and ARIMA 

model. The forecasted value  at time  can 

be obtained as follows :

 


, (5)

where  is the fitted value from ARIMA 

model;  is an estimates via NN model, where 

residuals from ARIMA fits are used as inputs of 
NN. The linear model fit is first applied, and the 
nonlinear model fit follows. Tseng, et al. (2002) 
and Zhang (2003) empirically showed that apply-
ing the linear and nonlinear models in sequence 
can improve the forecasting performance. 

The suggested hybrid models in this paper 
are similar to those in the previous methods, but 
are also novel in some aspects. First, we initially 
suggest applying a GAM as the nonlinear model, 
as an alternative to the NNs. Second, the order 
in which the linear model and nonlinear model 
are applied can be switched. For example, the 
GAM can be estimated first, and its residuals can 
be used to fit the  model. The notation ‘GAM-AR’ 
will be employed in this case. Finally, we also 
allow applying linear models together or non-
linear models together. For example, the GAM is 
estimated first, and its residuals are then used to fit 
another GAM; for this case, the notation ‘GAM- 
GAM’ will be used. 

The suggested GAM related hybrid models 
can be expressed as follows. 

  ⋯ 

   ⋯ 

(6)

where ⋅  is either a linear model (of AR, 
SARIMA) or an additive function in the GAM; 
⋅  is also either a linear model (of AR, 
SARIMA) or an additive function in the GAM; 
’s are residuals from   ⋯  and 

 is the error term at , and  for all  are 
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uncorrelated.  Here, at least one of ⋅  or ⋅  
should include the additive function in the GAM. 
Therefore, a total of seven models (GAM-AR, 
GAM-SARIMA, GAM-NN, GAM-GAM, AR-GAM, 
SARIMA-GAM, NN-GAM) will be considered. 

For extensive comparison of the various 
types of hybrid models, we have also considered 
additional nine hybrid models combining two 
linear AR and SARIMA models and a nonlinear 
NN model. Prediction performances between the 
total 16 hybrid models and the four pure models 
are evaluated with different five types of simu-
lated data in the following sections. 

3. Simulation Analysis

The forecasting performance for the four 
pure models (AR, SARIMA, NNs and GAM) and 
the 16 hybrid models are compared and evaluated 
via simulation data in this section. Time series data 
are generated via combining the three important 
components of seasonality, trend, and irregularity. 
The specific data generating process (DGP) and 
simulation analysis results are explained below. 

3.1 Data Generating Process and Prediction

Various types of seasonal and trend time 
series data are generated using the following five 
approaches : (i) a seasonality (ii) an additive com-
bination of a linear trend and a seasonality (iii) 
a multiplicative combination of a linear trend and 
a seasonality (iv) an additive combination of a 
quadratic function trend and a seasonality, and (v) 
a multiplicative combination of a quadratic func-

tion trend and a seasonality. These five approa-
ches are realized via the following five data gene-
rating processes, which are written as 

DGP 1 :  cos


 (7)

DGP 2 :   

cos


    (8)

DGP 3 :   

cos


    (9)

DGP 4 :   

  cos


   (10)

DGP 5 :   

cos


   (11)

where ∼  . To examine the effects of 

irregularity, various levels of innovation variance 
are allowed. In particular,  is set to be 0.01, 0.1, 
0.5, 1 and 2 for DGPs 1, 2 and 4, 1, 5, 10, 20 
and 30 for DGP 3, and 1, 10, 30, 40 and 50 for 
DGP 5 to reflect the more explicit effects of 
irregularity. Panels (a) to (e) in <Figure 1> describe 
the realized DGPs 1 to 5 with the smallest level 
of noise. For the purpose of comparing the effects 
of irregularity, the DGPs 1 to 5 with the largest 
level of noise are depicted in panels (f) to (j) in 
<Figure 1>. The amplitude of vibration due to the 
seasonal factor tends to show a broadening trend 
in the multiplicative models, whereas it seems to 
be parallel in the additive models. Regardless of 
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Panels (a) to (e) indicate GDPs 1 to 5 with the smallest levels of noises and
panels (f) to (j) indicate DGPs 1 to 5 with the largest levels of noise.

<Figure 1> Description of Simulation Data

the different levels of noise, the patterns of the 
five DGP counterparts seem to be still evident in 
terms of seasonality and trend. 

There are some real data demonstrating 
these five types of data processes. For example, 
dynamics of 5-minute call arrivals at a US North 
American bank call center appear to follow the 
pattern of DGP 1. The monthly US retail sales 

series at department stores (from US Census 
Bureau) seem to be like DGP 2. The monthly 
sales of soft drinks (from Montgomery et al., 
1990) seem to have a similar pattern with DGP 
3. Some monthly observed US consumer good 
production (from Federal Reserve Board) appears 
to demonstrate DGP 4. The monthly US national 
monetary aggregates are similar to DGP 5. 
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To evaluate the forecasting performance 
between models, the following procedures are 
considered. For each DGP, 300 points are gene-
rated, which are then divided into two data sets: 
one works as an in-sample data set with 240 data 
points from the initial point, whereas the other 
works as an out-of sample data set with the 
remaining 60 data points. 

The first one time ahead (the 241st data 
point) forecasting is carried out using the in- 
sample data (the initial 240 data points). Then, 
the original in-sample data set is updated by 
excluding the 1st data point and including the 241st 
data point, which maintains the total number of 
in-sample data set equally 240. The next one time 
ahead (the 242nd data point) forecasting is done 
using this updated in-sample data. In this way, 
the one time ahead prediction procedures continue 
up to the last 300th data point. By comparing the 
predicted data points and actual data points over 
the total forecasting period (the 241st~300th data 
points), the prediction performances are measured. 

The root mean square error (RMSE) sta-
tistic using the out-of-sample data set is computed 
to evaluate the forecasting performance of the 
models in this study. The RMSE is a popularly 
applied standard prediction performance measure 
and can be written as 

  





  








(12)

where   is the predicted point for actual point 

  and  is the number of predicted points.  In 

this study, . 
We need to note that there has been a data 

preprocessing in our analysis. If there are seasonal 
variations, they tend to be removed from the 
original time series before forecasting in the 
literature. So, we first estimate the seasonal effect 
from each DGP using the function ‘decompose’ 
in R program. Then the estimated seasonal effects 
are deleted from the original time series. Lastly, 
the estimated effects are scaled back for fore-
casting. 

3.2 Results

Regarding the optimal model selection, va-
rious statistics packages for R program are utilized 
in this study. The function ‘ar’ in the package 
‘stats’, which is installed in R by default, is used 
for estimation of the AR models, and the function 
‘auto. arima’ in the package ‘forecast’ by Hyndman 
(2012), is employed for the estimation of the 
SARIMA models. To determine the number of 
lags for GAMs, we calculated the AIC values for 
all the considered lags, and the minimum AIC 
value is used when the optimal lag number is 
selected. Similarly, the minimum AIC values are 
applied to the selection of the number of lags and 
hidden nodes for the NN models. The maximum 
number of lags is set to be five across all models. 
The maximum numbers of hidden nodes for the 
NN models are set to be 32, which is considered 
an appropriate level for NN models with the 
maximum of five inputs. The estimation for NNs 
and GAMs is conducted using functions of the 
R package ‘tsDyn’; the functions ‘nnetTs’ and 
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Level of noise

.01 .1 .5 1 2

AR 0.010074(1) 0.10074(1) 0.503699(1) 1.007398(2) 2.014797(3)

SARIMA 0.010182(16) 0.101823(16) 0.509054(15) 1.019475(15) 2.036954(15)

NN 0.010092(8) 0.100817(4) 0.503721(3) 1.006184(1) 2.028162(11)

GAM 0.010091(6) 0.100905(7) 0.504526(7) 1.009052(7) 2.018104(5)

AR-AR 0.010074(1) 0.10074(1) 0.503699(1) 1.007398(2) 2.014797(3)

AR-SARIMA 0.010181(15) 0.101777(15) 0.508158(11) 1.016325(11) 2.0326(14)

AR-NN 0.01013(12) 0.101273(11) 0.517992(19) 1.025508(17) 2.031552(13)

AR-GAM 0.010091(4) 0.100905(6) 0.504526(8) 1.009052(5) 2.018104(7)

SARIMA-AR 0.010184(17) 0.101835(17) 0.509033(14) 1.019433(14) 2.03711(16)

SARIMA-SARIMA 3.000785(20) 3.009286(20) 3.077646(20) 3.228921(20) 3.712402(20)

SARIMA-NN 0.010241(19) 0.10236(18) 0.516577(18) 1.035142(18) 2.07281(19)

SARIMA-GAM 0.010237(18) 0.102371(19) 0.511716(17) 1.024842(16) 2.047835(17)

NN-AR 0.010078(3) 0.100805(3) 0.504081(4) 1.008323(4) 2.009448(1)

NN-SARIMA 0.010155(13) 0.101572(13) 0.508296(12) 1.015865(10) 2.060087(18)

NN-NN 0.010113(10) 0.101263(10) 0.504134(5) 1.039319(19) 2.020224(9)

NN-GAM 0.010171(14) 0.101613(14) 0.508338(13) 1.018919(12) 2.0142(2)

GAM-AR 0.010091(5) 0.100905(8) 0.504526(6) 1.009052(6) 2.018104(6)

GAM-SARIMA 0.010124(11) 0.10154(12) 0.509782(16) 1.019139(13) 2.030546(12)

GAM-NN 0.010094(9) 0.100889(5) 0.504767(10) 1.011186(9) 2.022236(10)

GAM-GAM 0.010091(7) 0.100909(9) 0.504541(9) 1.009081(8) 2.0183(8)

<Table 1> RMSE of the Models for DGP 1 (Seasonality)

‘aar’ are used for the estimation of the NNs and 
GAMs, respectively. The package is provided by 
Di Narzo et al. (2012). 

Prediction performances between 20 models 
are compared in this study. Tables 1 to 5 report 
RMSE results for DGPs 1 to 5 with different 
levels of noise. The number in parentheses indi-
cates the rank of the corresponding model’s RMSE 
in increasing order. The characters in bold style 
indicate the top three in each rank. 

The RMSEs of several forecasting models 
for the generated data with only seasonality are 
reported in <Table 1>, where the AR model 
appears to be superior to other models. A pure 
NN model also outperformed several competing 
models when the noises variations were 0.5 and 

1. Among the hybrid models, the AR-AR ranked 
at the top level, and the NN-AR also showed good 
performance. However, the AR-NN model did not 
perform very well. These results seem to indicate 
that the order of model fitting can help to sig-
nificantly improve the forecasting performances. 
Meanwhile, the SARIMA model and the SARIMA- 
based hybrid models ranked bottom. The SARIMA 
model did not seem to be appropriate to the 
seasonality pattern only data, since this model is 
constructed to catch some non-stationary patterns 
due to the existence of trend. Note again that the 
DGP 1 is a generated data set with only season-
ality without any trend. On the other hand, the 
GAM and the hybrid model AR-GAM ranked at 
a slightly higher level than the middle.  
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Level of noise

0.01 0.03 0.05 1 2

AR 0.015352(19) 0.117614(7) 0.567743(8) 1.06691(6) 2.066311(3)

SARIMA 0.010175(1) 0.103607(2) 0.518935(3) 1.040322(2) 2.068004(6)

NN 0.012145(7) 0.119904(11) 0.704267(18) 1.901565(18) 2.956209(13)

GAM 0.012841(12) 0.129529(17) 0.581949(10) 1.073619(9) 2.069018(8)

AR-AR 0.013134(16) 0.116179(6) 0.566903(7) 1.06691(6) 2.066311(3)

AR-SARIMA 0.010385(4) 0.116086(5) 0.534448(5) 1.040322(2) 2.068004(6)

AR-NN 0.013858(17) 0.118847(9) 0.691305(14) 1.938472(19) 3.947892(20)

AR-GAM 0.01421(18) 0.11785(8) 0.569102(9) 1.073618(8) 2.069019(10)

SARIMA-AR 3.256782(20) 3.251754(20) 3.275902(20) 3.440062(20) 2.6971(11)

SARIMA-SARIMA 0.01021(2) 0.103968(3) 0.521061(4) 1.046467(4) 2.066812(5)

SARIMA-NN 0.010262(3) 0.103086(1) 0.618533(11) 1.743788(14) 3.578652(18)

SARIMA-GAM 0.010576(5) 0.106683(4) 0.512207(1) 1.034958(1) 2.065271(2)

NN-AR 0.012276(9) 0.120163(12) 0.696138(16) 1.873189(17) 3.490935(16)

NN-SARIMA 0.012939(15) 0.125451(15) 0.698652(17) 1.749196(15) 3.918667(19)

NN-NN 0.01216(8) 0.1232(14) 0.690407(13) 1.598648(12) 3.358867(15)

NN-GAM 0.012336(11) 0.122845(13) 0.692675(15) 1.806272(16) 3.528814(17)

GAM-AR 0.012116(6) 0.133381(19) 0.564461(6) 1.073619(9) 2.069018(8)

GAM-SARIMA 0.012284(10) 0.11957(10) 0.518795(2) 1.056138(5) 2.056273(1)

GAM-NN 0.012893(14) 0.130186(18) 1.378949(19) 1.662809(13) 3.116038(14)

GAM-GAM 0.012846(13) 0.129389(16) 0.657358(12) 1.312947(11) 2.737856(12)

<Table 2> RMSE of the Models for DGP 2 (Additive Linear Trend and Seasonality)

We could observe that the prediction on AR 
and AR-AR are same in DGP 1. Note that residuals 
from AR fits are used as inputs of another AR 
in AR-AR. Since DGP 1 consists of only season-
ality without any trend, if the first AR is appro-
priately fitted, the residuals may be left as random 
error term without any dependence structure. In 
this case, there will be no significant lag term in 
the second AR fits, and of which prediction 
results may be same as those of pure AR.

<Table 2> summarizes the results for pre-
diction performance of models for the simulated 
data using DGP 2, which has the pattern of an 
additive combination of a linear trend and season-
ality. Unlike in the case of DGP 1, the SARIMA 
model outperformed many competing models, the 

rankings of which were also very high. Some 
SARIMA based hybrid models also showed very 
good performances. In particular, the combination 
of SARIMA and GAM performed very well under 
several levels of noises ( = 0.05, 1, 2). The 
hybrid model SARIMA-SARIMA ranked within 
the top three when the variation of noise was rela-
tively small ( = 0.01, 0.03). The AR-SARIMA 
model also showed good performance, recording 
moderately high ranks over all the considered 
levels of noise variation. 

In contrast, the SARIMA-AR ranked bottom. 
The SARIMA-NN also showed good performance 
under small variation of noises, but its perfor-
mance worsened as the variation became larger. 
These results appear to indicate that the GAM is 
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Level of noise

1 5 10 20 30

AR 1.8133(19) 6.8922(15) 13.2986(10) 26.192(10) 39.6263(11)

SARIMA 1.1848(5) 5.8611(3) 11.9528(3) 23.5143(4) 36.0216(3)

NN 1.6881(15) 6.6698(9) 16.5101(19) 29.5686(16) 40.7554(17)

GAM 1.5638(12) 6.8661(14) 14.9659(15) 29.6492(17) 40.8046(18)

AR-AR 1.3877(9) 6.9219(16) 13.1571(9) 26.1677(9) 39.5139(10)

AR-SARIMA 1.2594(6) 6.372(6) 12.4228(7) 25.1221(6) 37.1172(7)

AR-NN 1.7681(18) 7.227(20) 13.3043(11) 26.6354(11) 40.1207(14)

AR-GAM 1.933(20) 7.1102(19) 13.4726(12) 26.1373(8) 38.8931(9)

SARIMA-AR 1.1721(2) 5.8372(2) 11.9577(4) 23.4687(2) 35.9196(2)

SARIMA-SARIMA 1.1632(1) 5.6509(1) 11.6063(1) 23.4692(3) 35.7107(1)

SARIMA-NN 1.1845(4) 5.9915(5) 11.9345(2) 23.8508(5) 36.6398(6)

SARIMA-GAM 1.1751(3) 5.9255(4) 11.9638(5) 23.4067(1) 36.5971(5)

NN-AR 1.4545(11) 6.8404(12) 13.8051(13) 29.0211(13) 39.6769(12)

NN-SARIMA 1.3178(7) 6.7086(10) 12.3625(6) 32.4608(20) 37.6408(8)

NN-NN 1.697(16) 6.9902(17) 16.9325(20) 30.8026(18) 40.0346(13)

NN-GAM 1.7148(17) 6.9945(18) 16.066(18) 29.1209(14) 40.4714(15)

GAM-AR 1.3998(10) 6.6128(8) 14.3384(14) 29.5542(15) 40.8046(18)

GAM-SARIMA 1.3478(8) 6.4734(7) 12.9812(8) 25.9979(7) 36.5155(4)

GAM-NN 1.5702(13) 6.826(11) 15.9407(17) 31.6959(19) 40.6085(16)

GAM-GAM 1.6145(14) 6.8642(13) 15.5459(16) 27.4761(12) 41.1674(20)

<Table 3> RMSE of the Models for DGP 3 (Multiplicative Linear Trend and Seasonality)

superior to NNs in the combination of a SARIMA- 
type hybrid model, in terms of providing stable 
good performance. On the other hand, the NN- 
SARIMA ranked below the middle. The predic-
tion performances of the pure models of NN and 
GAM were not very good. Likewise, the hybrid 
models based on the combinations of NNs and 
GAM also did not show good performances. 

As seen in <Table 3>, for DGP 3 the 
SARIMA model tended to perform very well 
compared with the other models, which is a similar 
result to the case for DGP 2. The other pure models, 
AR, GAM and NN, showed relatively poor 
performances. Regarding the hybrid models, the 
SARIMA-AR, SARIMA-SARIMA, SARIMA-NN 
and the SARIMA-GAM showed parallel outstan-

ding performances. When the SARIMA was esti-
mated first, the related hybrid models performed 
well. However, if the SARIMA was fitted later, 
the related hybrid models did not show good 
performances. 

<Table 4> shows the forecasting results for 
the simulation data using DGP 4, which includes 
an additively related quadratic trend with sea-
sonality. Here, the SARIMA model still performed 
well except in the case of very small noise ( 
= 0.1). The hybrid models AR-SARIMA, SARIMA- 
AR, and SARIMA-GAM appeared to provide 
parallel good performances over the whole range 
of noise variation. Meanwhile, the SARIMA-NN 
showed good performance only under small varia-
tion of noises, similar to the results for DGP 2. 



 
Level of noise

0.1 0.5 1 1.5 2

AR 0.0158(20) 0.1195(10) 0.5728(9) 1.0813(6) 2.0965(1)

SARIMA 0.0153(19) 0.1129(5) 0.5478(6) 1.0813(6) 2.0965(1)

NN 0.0122(7) 0.1184(8) 0.8085(15) 1.804(18) 3.3336(16)

GAM 0.013(14) 0.1321(18) 0.591(11) 1.0884(9) 2.1065(9)

AR-AR 0.0129(13) 0.1184(9) 0.5721(8) 1.0813(6) 2.0965(1)

AR-SARIMA 0.0108(1) 0.1156(6) 0.5382(5) 1.0554(3) 2.0979(5)

AR-NN 0.014(17) 0.1205(13) 0.9376(18) 1.7295(16) 3.5446(17)

AR-GAM 0.015(18) 0.1195(11) 0.5743(10) 1.0884(11) 2.1065(11)

SARIMA-AR 0.0118(4) 0.1073(1) 0.5182(1) 1.0513(2) 2.1032(7)

SARIMA-SARIMA 0.0116(2) 0.1076(2) 0.5296(3) 1.0652(4) 2.0969(4)

SARIMA-NN 0.0116(3) 0.108(3) 0.7403(12) 1.717(15) 4.2334(20)

SARIMA-GAM 0.0119(5) 0.1098(4) 0.5193(2) 1.0454(1) 2.1036(8)

NN-AR 0.0123(8) 0.1196(12) 0.843(16) 2.0556(20) 3.6932(18)

NN-SARIMA 0.012(6) 0.1209(14) 0.9125(17) 1.5431(13) 3.0392(14)

NN-NN 0.0125(10) 0.1215(15) 0.806(14) 1.743(17) 3.8882(19)

NN-GAM 0.0124(9) 0.1216(16) 0.7953(13) 1.9722(19) 3.0965(15)

GAM-AR 0.0126(11) 0.1345(20) 0.5717(7) 1.0884(9) 2.1065(9)

GAM-SARIMA 0.0127(12) 0.117(7) 0.531(4) 1.0794(5) 2.0992(6)

GAM-NN 0.013(15) 0.1326(19) 0.9391(19) 1.6231(14) 2.7224(13)

GAM-GAM 0.013(16) 0.132(17) 1.2504(20) 1.2056(12) 2.5747(12)

<Table 4> RMSE of the Models for DGP 4 (Additive Quadratic Trend and Seasonality)

 
Level of noise

1 5 10 20 30

AR 2.8537(19) 17.8441(11) 52.2656(13) 68.1616(16) 82.7149(16)

SARIMA 1.8103(3) 15.9457(5) 47.3936(4) 62.6604(4) 78.112(7)

NN 2.1462(15) 25.0637(19) 52.7886(14) 68.2284(17) 80.549(11)

GAM 1.9992(11) 20.7432(16) 55.9308(19) 69.7498(19) 84.3723(18)

AR-AR 2.0548(13) 17.7995(10) 51.7819(12) 67.6431(14) 82.0754(14)

AR-SARIMA 1.9872(10) 17.2787(8) 48.1017(5) 64.1948(8) 79.0541(9)

AR-NN 3.0317(20) 17.5493(9) 50.902(10) 64.5542(9) 76.8408(5)

AR-GAM 2.7768(18) 16.614(7) 50.4985(9) 67.0034(12) 82.0685(13)

SARIMA-AR 1.8114(4) 15.3686(2) 46.4445(3) 61.233(2) 76.455(3)

SARIMA-SARIMA 1.6896(1) 15.8129(4) 48.2172(6) 63.4718(7) 80.5887(12)

SARIMA-NN 1.8389(6) 15.5966(3) 45.8388(2) 62.0935(3) 76.2773(1)

SARIMA-GAM 1.7848(2) 15.2735(1) 45.7927(1) 60.8941(1) 76.551(4)

NN-AR 1.914(8) 19.1036(13) 51.1936(11) 67.319(13) 80.3705(10)

NN-SARIMA 2.127(14) 16.4955(6) 49.3004(8) 64.8044(10) 76.4207(2)

NN-NN 2.1726(16) 26.7244(20) 54.9529(16) 66.899(11) 82.1915(15)

NN-GAM 2.3636(17) 22.8876(18) 53.4925(15) 63.1403(6) 77.8108(6)

GAM-AR 1.857(7) 19.5359(14) 55.0056(17) 68.3076(18) 83.0325(17)

GAM-SARIMA 1.8223(5) 18.883(12) 48.9484(7) 63.1402(5) 78.9818(8)

GAM-NN 2.0337(12) 21.6489(17) 55.8115(18) 67.7275(15) 84.8106(20)

GAM-GAM 1.9601(9) 20.5745(15) 56.4315(20) 79.0112(20) 84.6583(19)

<Table 5> RMSE of the Models for DGP 5 (Multiplicative Quadratic Trend and Seasonality)
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For DGP 5, the forecasting results in <Table 

5> were very similar to those for DGP 3. The 

SARIMA model performed relatively well. The 

SARIMA-type hybrid models, that is, the hybrid 

models in which the SARIMA was estimated 

first, performed better than did the other hybrid 

models. 

We could not find a model that conclu-

sively outperformed all the other models based on 

the outputs in Tables 1 to 5. However, we could 

find some important results, which are summa-

rized as follows.  

∙ For the data with only seasonality without any 

trend, the AR, AR-AR, and NN-AR showed 

relatively better performances than did the other 

competing models. In contrast, the SARIMA 

and SARIMA related hybrid models showed 

poor performances.

∙ If a linear trend is additively employed with 

seasonality, the SARIMA model tended to out-

perform many other competitors. The hybrid 

models SARIMA-SARIMA, SARIMA-GAM, 

and AR-SARIMA also showed relatively good 

performances. 

∙ When the linear trend and seasonality are multi-

plicatively related, the SARIMA, SARIMA-AR, 

SARIMA-SARIMA, SARIMA-NN, SARIMA- 

GAM showed parallel good performances. Note 

that the SARIMA is estimated first in these 

hybrid models.

∙ Prediction performances for the case of a 

quadratic trend were very similar to those for 

the case of a linear trend. 

∙ In the comparison of GAMs and NNs, both the 

hybrid models SARIMA-GAM and SARIMA- 

NN tended to be in parallel, showing very 

good prediction performances for the multi-

plicative trend models. 

∙ Regarding data of the additive trend model, 

the SARIMA-GAM performed well for the 

full range of noise variation, whereas the 

SARIMA-NN provided a good performance 

only when the noise level was trivial.

4. Conclusions

This paper suggests novel hybrid foreca-

sting models using GAMs as an alternative to 

those using NNs. Versatile hybrid prediction models 

combining four non-hybrid models (AR, SARIMA, 

GAM, and NN) are also suggested. The prediction 

performances of the suggested hybrid models were 

compared with those of the non-hybrid models via 

simulation studies. Data are simulated using five 

different types of seasonality and trend with 

various levels of noise. 

Our study was restricted to only finite cases 

of simulation, but some important results were 

nevertheless obtained. According to the simula-

tion analysis results, the prediction performances 

between models seem to depend on the type of 

time series data. In particular, for the data set with 

only seasonality, the AR (a non-hybrid model) 

and AR-AR (a hybrid model) models equivalently 

outperformed many other competing models. On 
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the other hand, once the time series data included 

any trend, the SARIMA and some SARIMA related 

hybrid models performed well. The SARIMA- 

GAM seemed to be better than did the SARIMA- 

NN for the time series data with an additive trend, 

given that the former showed overall good pre-

diction performances for the full range of noise 

levels, whereas the latter did so only under small 

levels of noise.  

These results can be applied to the corres-

ponding real data, and some related business 

implications seem to be available. For example, 

the AR and AR-AR are expected to show rela-

tively better performances than other models in 

predicting the data like call arrivals which are 

with strong seasonality, but without any increa-

sing or decreasing trend. The accurately fore-

casted call volumes may be helpful in optimizing 

the schedules of call agents. The SARIMA and 

some SARIMA related hybrid models are re-

commended to predict any trend related series like 

monthly US retail sales at department stores,  

monthly sales of soft drinks, monthly US series 

of some consumer good production, and monthly 

observed US national monetary aggregates. Inven-

tory management of department stores will be 

improved if retail sales amounts are accurately 

forecasted. Soft drink companies may be able to 

make an effective production plan according to 

the predicted demand. Accurately predicted cons-

umer good production can be utilized in building 

the consumer price index, which will be used as 

a measure of inflation. Effective monetary policies 

via governments may be available using the pre-

dicted money demand. 
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Abstract

트렌드와 계절성을 가진 시계열에 대한 순수 모형과 

하이브리드 모형의 비교 연구

1)정철우*․김명석**

본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 

성과를 비교․평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 

진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal auto-

regressive integrated moving average model)이고,  비선형 모형은 인공신경망(artificial neural networks 

model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 

위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 

가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 

SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 

GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 

거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 

SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.

Keywords : Forecasting, Generalized Additive Models, Seasonal ARIMA, Neural Networks,

Hybrid Models
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