• Title/Summary/Keyword: Generalized Cross-Validation

Search Result 77, Processing Time 0.024 seconds

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

Diagnostic for Smoothing Parameter Estimate in Nonparametric Regression Model

  • In-Suk Lee;Won-Tae Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.266-276
    • /
    • 1995
  • We have considered the study of local influence for smoothing parameter estimates in nonparametric regression model. Practically, generalized cross validation(GCV) does not work well in the presence of data perturbation. Thus we have proposed local influence measures for GCV estimates and examined effects of diagnostic by above measures.

  • PDF

Varying coefficient model with errors in variables (가변계수 측정오차 회귀모형)

  • Sohn, Insuk;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.971-980
    • /
    • 2017
  • The varying coefficient regression model has gained lots of attention since it is capable to model dynamic changes of regression coefficients in many regression problems of science. In this paper we propose a varying coefficient regression model that effectively considers the errors on both input and response variables, which utilizes the kernel method in estimating the varying coefficient which is the unknown nonlinear function of smoothing variables. We provide a generalized cross validation method for choosing the hyper-parameters which affect the performance of the proposed model. The proposed method is evaluated through numerical studies.

IRF-k kriging of electrical resistivity data for estimating the extent of saltwater intrusion in a coastal aquifer system

  • Shim B. O.;Chung S. Y.;Kim H. J.;Sung I. H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.352-361
    • /
    • 2003
  • We have evaluated the extent of saltwater intrusion from electrical resistivity distribution in a coastal aquifer system in the southeastern part of Busan, Korea. This aquifer system is divided into four layers according to the hydrogeologic characteristics and the horizontal extent of intruded saltwater is determined at each layer through the geostatistical interpretation of electrical resistivity data. In order to define the statistical structure of electrical resistivity data, variogram analysis is carried out to obtain best generalized covariance models. IRF-k (intrinsic random function of order k) kriging is performed with covariance models to produce the plane of spatial mean resistivities. The kriged estimates are evaluated by cross validation to show a good agreement with the true values and the statistics of cross validation represented low errors for the estimates. In the resistivity contour maps more than 5 m below the surface, we can see a dominant direction of saltwater intrusion beginning from the east side. The area of saltwater intrusion increases with depth. The northeast side has low resistivities less than 5 ohm-m due to the presence of saline water in the depth range of 20 m through 70 m. These results show that the application of geostatistical technique to electrical resistivity data is useful for assessing saltwater intrusion in a coastal aquifer system.

  • PDF

Claims Reserving via Kernel Machine

  • Kim, Mal-Suk;Park, He-Jung;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1419-1427
    • /
    • 2008
  • This paper shows the kernel Poisson regression which can be applied in the claims reserving, where the row effect is assumed to be a nonlinear function of the row index. The paper concentrates on the chain-ladder technique, within the framework of the chain-ladder linear model. It is shown that the proposed method can provide better reserve estimates than the Poisson model. The cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented which indicate the performance of the proposed model.

  • PDF

Semiparametric kernel logistic regression with longitudinal data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.385-392
    • /
    • 2012
  • Logistic regression is a well known binary classification method in the field of statistical learning. Mixed-effect regression models are widely used for the analysis of correlated data such as those found in longitudinal studies. We consider kernel extensions with semiparametric fixed effects and parametric random effects for the logistic regression. The estimation is performed through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of optimal hyperparameters, cross-validation techniques are employed. Numerical results are then presented to indicate the performance of the proposed procedure.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

NUMERICAL METHDS USING TRUST-REGION APPROACH FOR SOLVING NONLINEAR ILL-POSED PROBLEMS

  • Kim, Sun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1147-1157
    • /
    • 1996
  • Nonlinear ill-posed problems arise in many application including parameter estimation and inverse scattering. We introduce a least squares regularization method to solve nonlinear ill-posed problems with constraints robustly and efficiently. The regularization method uses Trust-Region approach to handle the constraints on variables. The Generalized Cross Validation is used to choose the regularization parameter in computational tests. Numerical results are given to exhibit faster convergence of the method over other methods.

  • PDF

Application of Regularization Method to Angle-resolved XPS Data (각분해X-선광전자분광법 데이터 분석을 위한 regularization 방법의 응용)

  • 노철언
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 1996
  • Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonhstrates its excellent utility for the complex depth profile system . It includes the stable restoration of depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.

  • PDF

Variable selection for multiclassi cation by LS-SVM

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.959-965
    • /
    • 2010
  • For multiclassification, it is often the case that some variables are not important while some variables are more important than others. We propose a novel algorithm for selecting such relevant variables for multiclassification. This algorithm is base on multiclass least squares support vector machine (LS-SVM), which uses results of multiclass LS-SVM using one-vs-all method. Experimental results are then presented which indicate the performance of the proposed method.