References
- Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J., Sabet, H., Tran, T., Yu, X. et al. (2000). Distinct types of diffuse large celllymphoma identified by gene expression profiling. Nature, 403, 503-511. https://doi.org/10.1038/35000501
- Cho, D. H., Shim, J. and and Seok, K. H. (2010). Doubly penalized kernel method for heteroscedastic autoregressive data. Journal of Korean Data & Information Science Society, 21, 155-162.
- Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M. and Downing, J. et al. (1999). Molecular classification of cancer: Classdiscovery and class prediction by gene expression monitoring. Science, 286, 531-537. https://doi.org/10.1126/science.286.5439.531
- Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 89-422.
- Hwang, H. (2010). Fixed size LS-SVM for multiclassification problems of large data sets. Journal of Korean Data & Information Science Society, 21, 1561-567.
- Khan, J., Bittner, M. L., Saal, L. H., Teichmann, U., Azorsa, D. O., Gooden, G. C., Pavan, W. J., Trent, J. M. and Meltzer, P.S. (1999). cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proceedings of the National Academy of Sciences, 96, 13264-13269. https://doi.org/10.1073/pnas.96.23.13264
- Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
- Koo, J. Y., Sohn, I., Kim, S. and Lee, J. W. (2006). Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics, 22, 950-990. https://doi.org/10.1093/bioinformatics/btl029
- Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, A, 415-446.
- Pomeroy, S., Tamayo, P., Gaasenbeek, M., Sturla, L., Angelo, M., McLaughlin, M., Kim, J., Goumnerova, L., Black, P. and Lau, C., et al. (2002). Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature, 415, 436-442. https://doi.org/10.1038/415436a
- Scholkopf, B., Burges, C. and Vapnik, V. (1995). Extracting support data for a given task. Proceedings of First Conference on Knowledge Discovery and Data Mining, 252-257.
- Shim, J., Bae, J. S. and Hwang, C. (2008). Multiclass classification via LS-SVR. Communications of the Korean Statistical Society, 15, 441-450. https://doi.org/10.5351/CKSS.2008.15.3.441
- Shim, J. and Lee, J. T. (2009). Kernel method for autoregressive data. Journal of Korean Data & Information Science Society, 20, 467-4720.
- Shim, J., Park, H. and Hwang, C. (2009a). A kernel machine for estimation of mean and volatility functions. Journal of Korean Data & Information Science Society, 20, 905-912.
- Shim, J., Sohn, I., Kim, S., Lee, J.W., Green, P. E. and Hwang, C. (2009b). Selecting marker genes for cancer classification using supervised weighted kernel clustering and the support vector machine. Computational Statistics and Data Analysis, 53, 1736-1742. https://doi.org/10.1016/j.csda.2008.04.028
- Suykens, J. A. K. and Vandewalle, J. (1999a). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Suykens, J. A. K. and Vandewalle, J. (1999b). Multiclass least squares support vector machines. Proceeding of the International Joint Conference on Neural Networks, 900-903.
- Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences, 99, 6567-6572. https://doi.org/10.1073/pnas.082099299
- Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
- Vapnik, V. N. (1998). Statistical learning theory, Springer, New York.
- Weston, J. and Watkins, C. (1998). Multi-class SVM, Technical Report 98-04, Royal Holloway University of London.
- Zhang, H.H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines with non-convex penalty. Bioinformatics, 22, 88-95. https://doi.org/10.1093/bioinformatics/bti736