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Abstract

For multiclassification, it is often the case that some variables are not important,
while some variables are more important than others. We propose a novel algorithm
for selecting such relevant variables for multiclassification. This algorithm is based
on multiclass least squares support vector machine (LS-SVM), which uses results of
multiclass LS-SVM using one-vs-all method. Experimental results are then presented
which indicate the performance of the proposed method.

Keywords: Generalized cross validation function, kernel function, least squares support
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1. Introduction

A modified version of support vector machine (SVM) originally introduced by Vapnik
(1995, 1998) in a least squares sense has been proposed for classification in Suykens and
Vandewalle (1999a). In LS-SVM concerning classification problems, we have regression in-
terpretations and direct links to work in classical statistics. The solution is given by a linear
system instead of a quadratic programming problem. The fact that LS-SVM has explicit
primal-dual formulations has lots of advantages. Kernel tricks are used in LS-SVM to treat
the nonlinear relation between input variables and output variable. See Cho et al . (2010),
Hwang (2010), Shim and Lee (2009), and Shim et al . (2009a) for the reference.

The binary classification by SVM or LS-SVM is known to be well developed. Multiclas-
sification is typically performed using voting scheme method based on combining a set of
binary classifications (Scholkopf et al ., 1995). Suykens and Vandewalle (1999b) proposed
multiclassification method using LS-SVM in a step but its linear equation is composed of
several linear equations corresponding to each of binary classifications. Weston and Watkins
(1998) proposed multiclassification method using SVM which does not use a combination of
binary classifications.

Variable selection is very important in microarray technology which allows us to look at
many genes at once and determine which are expressed in a particular cell type. This tech-
nology has various applications such as gene discovery, disease diagnosis and drug discovery.
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In most microarray data, some genes are irrelevant and some relevant genes (marker genes)
play a more important role than others in classification. The selection of marker genes for
classification of different phenotypes, predominantly cancer types, using microarray gene
expression data is to provide a better understanding of the underlying biological system
and to improve the prediction performance of classifiers. There are lots of literatures in
studies of variable selection, Guyon et al . (2002), Tibshirani et al . (2002), Zhang et al .
(2006) and Koo et al . (2006). Guyon et al . (2002) developed SVM with a recursive features
elimination (SVM-RFE) algorithm and Tibshirani et al . (2002) developed the prediction
analysis of microarrays (PAM) method based upon an enhancement of the simple nearest
prototype classifier. Recently, Koo et al . (2006) proposed the structured polychotomous
machine (SPM) based on a functional analysis of variance decomposition using structured
kernels.

In this paper we propose a variable selection method for multiclass LS-SVM, which uses
results of multiclassification by LS-SVM. From the quadratic programming problem we
obtain weights whose magnitudes imply the importance of variables on multiclassification.

The rest of paper is organized as follows. In Section 2 we present an overview of multi-
class LS-SVM and model selection methods. In Section 3 we propose the variable selection
method. In Section 4 we perform the numerical studies with real data sets. In Section 5 we
give the concluding remarks.

2. Multiclass LS-SVM

2.1. LS-SVM

Let the training data set be denoted by {xi, yi}ni=1, with each input xi ∈ Rd, the output
yi ∈ R. We consider the case of nonlinear regression. Then we take the form

f(x) = wtΦ(x) + b.

Here b is a bias term and w ∈ Rdf is a weight vector corresponding to the feature mapping
function Φ(·) : Rd → Rdf which maps the input space to the higher dimensional feature
space where the dimension df is defined in an implicit way.

The optimization problem is defined with a regularization parameter C > 0 as

Minimize
1

2
wtw +

C

2

n∑
i=1

e2
i (2.1)

over {w, b, e} subject to equality constraints

yi = wtΦ(xi) + b+ ei , i = 1, · · · , n.

The Lagrangian function can be constructed as

L(w, b, e : α) =
1

2
wtw +

C

2

n∑
i=1

e2
i −

n∑
i=1

αi (wtΦ(xi) + b+ ei − yi ), (2.2)
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where αi’s are the Lagrange multipliers. The conditions for optimality given by

δL

δw
= 0→ w =

n∑
i=1

αiΦ(xi)

δL

δb
= 0→

n∑
i=1

αi = 0

δL

δei
= 0→ ei =

1

C
αi, i = 1, · · · , n

δL

δαi
= 0→ wtΦ(xi) + b+ ei − yi = 0, i = 1, · · · , n,

lead to the linear equation, K +
1

C
In 1n

1t
n 0

[α
b

]
=

[
y
0

]
(2.3)

where 1n is the n× 1 vector of ones and K is the n× n kernel matrix with elements Kij =
Φ(xi)

tΦ(xj), i, j = 1, · · · , n, which are obtained from the application of Mercer’s conditions
(1909). Solving the linear equation (2.3) the optimal bias and Lagrange multipliers, b and
αi’s are obtained, then the optimal regression function for a test data point x∗t is obtained
as

ŷ(x∗t ) =

n∑
i=1

K(x∗t ,xi)αi + b. (2.4)

In the nonlinear case w is no longer explicitly given. However, it is uniquely defined in
the weak sense by the dot products. Here the linear regression model can be regarded as the
special case of the nonlinear regression model by using identity feature mapping function,
that is, Φ(x) = x which implies the linear kernel matrix such that K(x1,x2) = xt

1x2.
Note that it can be easily shown that Lagrange multipliers of LS-SVM for binary classifi-

cation are identical to product of diagonal matrix of y and Lagrange multipliers of LS-SVM
for regression obtained from equation (2.3), when y consists of class labels -1 and 1. That
is, if y consists of class labels -1 and 1, ŷ obtained by LS-SVMs for regression and classi-
fication are identical. Thus, for the binary classification, each observation of the test data
can be classified into either class according to the sign of ŷ(x∗t ) in (2.4) for t = 1, · · · , nt.
See for details Shim et al . (2008). We use LS-SVM for regression, instead of LS-SVM for
classification, to approximate the cross validation function of multiclass LS-SVM.

2.2. Multiclass LS-SVM using one-against-all method

In this section we give a simple overview on multiclass LS-SVM using one-against-all
method (Shim et al ., 2008). Let the training data set be denoted by {xi, yi}ni=1, with each
input vector xi ∈ Rd and the class label yi ∈ {1, 2, · · · ,m}, where m is number of classes.
For multiclassification using one-against-all method, we transform y into n ×m matrix Y
which consists of -1 and 1 such that Yij = 1 and Yik = −1 for j 6= k implies that the i th
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observation belongs to the j th class. We have m LS-SVMs for binary classification with
{xi, Yij}ni=1 for j = 1, · · · ,m. From the linear equation,K +

1

C
In 1n

1t
n 0

[αj

bj

]
=

[
Y .j

0

]
, (2.5)

the optimal bias and Lagrange multipliers, bj and αj
i ’s are obtained. Here Y .j is the j th

column of Y .
For the test data point x∗t , we have

Ŷtj(x
∗
t ) =

n∑
i=1

K(x∗t ,xi)α
j
i + bj for t = 1, · · · , , nt. (2.6)

Thus, if Ŷtj(x
∗
t ) > 0 and Ŷtk(x∗t ) < 0 for k 6= j then the test data point x∗t is classified into

the j th class for t = 1, · · · , nt.

2.3. Model selection for multiclass LS-SVM

The functional structure of multiclass LS-SVM is characterized by hyperparameters, the
regularization parameter C and the kernel parameters. To select the parameters of multiclass
LS-SVM, we define a cross validation (CV) function as follows:

CV (λ) =
1

n

n∑
i=1

(Yimi
− Ŷ (−i)

imi
(λ))2, (2.7)

where λ is the set of hyperparameters and Ŷ
(−i)
imi

(λ) is the predicted value of Yimi
obtained

from data without i th observation. Here mi is the column number of the i th row of Y
such that Yimi

= 1, which implies that the i th observation belongs to the mi th class. The
CV function can be rewritten as

CV (λ) =
1

n

n∑
i=1

(1− Ŷ (−i)
imi

(λ))2. (2.8)

Since for each candidates of hyperparameters, Ŷ
(−i)
imi

(λ) for i = 1, · · · , n, should be eval-
uated, selecting parameters using CV function is computationally formidable. By leaving-
out-one lemma (Kimeldorf and Wahba, 1971) and the first order Taylor expansion, we have
a generalized cross validation (GCV) function (Shim et al . 2008),

GCV (λ) =
n
∑n

i=1(1− Ŷimi(λ))2

(n− trace(S))2
. (2.9)

where S is the hat matrix obtained from the linear equation (2.5) such that Ŷ .j = SY .j for
j = 1, · · · ,m.



Variable selection for multiclassification by LS-SVM 963

3. Variable selection for multiclassification

We express the estimate of Yij as the weighted sum of Ŷ k
ij ’s, Ŷij =

∑p
k=1 ckŶ

k
ij , where

Ŷ
k

.j = {Ŷ k
ij}ni=1 is obtained from the linear equation (2.5) with replacing K by Kk where

Kk is the n×n kernel matrix constructed from {xik}ni=1 with xik the k th variable of the i th
observation, k = 1, · · · , p. The important variables can be selected according to magnitude
of c′ks, which are obtained by minimizing the objective function,

L(c) =

n∑
i=1

(1−
p∑

k=1

ckŶ
k
imi

)2 (3.1)

subject to
∑p

k=1 ck = 1 and ck ≥ 0 for k = 1, · · · , p. Here mi is the column number of the i
th row of Y such that Yimi

= 1, which implies that the i th observation belongs to the mi

th class. The equation (3.1) can be rewritten as a quadratic programming problem,

min L(c) =
1

2
c′Ŷ

∗′Ŷ
∗
c− 1′N Ŷ

∗
c subject to 1′c = 1 and c ≥ 0, (3.2)

where Ŷ
∗

is a n× p matrix with Ŷ ∗ik = Ŷ k
imi

for i = 1, · · · , n, k = 1, · · · , p.
To determine the optimal values of c which represent the importance of variables, we use

the two stepwise procedure as follows.

1) Find Ŷ ∗ik’s with the specified values of hyperparameters obtained from GCV function
in (2.9).

2) Find ĉ which minimizes the objective function L(c) in (3.2).

4. Numerical studies

In this section we illustrates how well the proposed variable selection method works for
selection of marker genes through real microarray data sets. To evaluate the performance of
our proposed method in practice, we analyzed four publicly available microarray data sets:
(i) Leukemia data set (Golub et al ., 1999). (ii) Lymphoma data set (Alizadeh et al ., 2000).
(iii) Small Round Blue Cell Tumor (SRBCT) data set (Khan et al ., 1999). (iv) Brain tumor
data set (Pomeroy et al ., 2002).

All data were transformed to the base 10 log scale, and the arrays were standardized for
analysis. For each given data set, there is no applicable test set, so we performed 3-fold cross
validation and examined classification error rates. This procedure was repeated 50 times to
obtain necessary performance measures to compare with other methods. The radial basis
function kernel was applied to SRBCT data set,

K(x1,x2) = exp(−
1

σ2
||x1 − x2||2)

and the linear kernel was applied to the rest of data sets. The optimal values of hyperpa-
rameters for each data set are obtained by GCV function (2.9).
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Table 4.1 Number of variables selected (number of classes in parenthesis)

Proposed SVM-RFE PAM SPM
Leukemia (3) 6.88 3.62 22.42 3.80

Lymphoma (3) 12.22 11.92 24.68 3.88
SRBCT (4) 8.40 14.24 18.12 4.96
Brain (5) 10.52 14.12 23.56 2.04

Table 4.2 Misclassification rates (standard error in parenthesis)

Proposed SVM-RFE PAM SPM
Leukemia 0.0442 (0.0092) 0.0833 (0.0057) 0.0633 (0.0062) 0.0708 (0.0066)

Lymphoma 0.0238 (0.0076) 0.0447 (0.0061) 0.1800 (0.0130) 0.0152 (0.0032)
SRBCT 0.0350 (0.0083) 0.0507 (0.0073) 0.0235 (0.0042) 0.0614 (0.0069)
Brain 0.3871 (0.0364) 0.3742 (0.0171) 0.4257 (0.0229) 0.3785 (0.0102)

Error rates and the average number of genes selected were compared between our method
and three other methods: PAM, SPM and SVM-RFE. Results by three other methods are
from Shim et al . (2009b). Tables 4.1 and 4.2 display the average numbers of the genes
selected, mean error rates and standard errors, respectively. As shown in Table 4.1, the
proposed method gives relatively smaller average numbers of the genes selected compared
with SVM-RFE and PAM but larger compared with SPM. However, as shown in Table 4.2,
the proposed method gives generally lower or almost same mean error rates for all four data
sets. In particular, for Leukemia data set the proposed method gives remarkably lower mean
error rates than other methods.

5. Concluding remarks

In this paper, we proposed a variable selection method to identify the important variables
in multiclassification. To show the performance of the proposed variable selection method,
we used four real data sets (Leukemia, Lymphoma, SRBCT, Brain), and we compared the
proposed method with three other existing methods (SVM-RFE, PAM, SPM). The experi-
mental results show that the proposed variable selection method has better performance in
some data sets than existing methods. In addition, our variable selection method has the
advantage that the computing time is much shorter in comparison to other existing methods.
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