• Title/Summary/Keyword: General tensor

Search Result 70, Processing Time 0.03 seconds

Optimizing 2-stage Tiling-based Matrix Multiplication in FPGA-based Neural Network Accelerator (FPGA기반 뉴럴네트워크 가속기에서 2차 타일링 기반 행렬 곱셈 최적화)

  • Jinse, Kwon;Jemin, Lee;Yongin, Kwon;Jeman, Park;Misun, Yu;Taeho, Kim;Hyungshin, Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • The acceleration of neural networks has become an important topic in the field of computer vision. An accelerator is absolutely necessary for accelerating the lightweight model. Most accelerator-supported operators focused on direct convolution operations. If the accelerator does not provide GEMM operation, it is mostly replaced by CPU operation. In this paper, we proposed an optimization technique for 2-stage tiling-based GEMM routines on VTA. We improved performance of the matrix multiplication routine by maximizing the reusability of the input matrix and optimizing the operation pipelining. In addition, we applied the proposed technique to the DarkNet framework to check the performance improvement of the matrix multiplication routine. The proposed GEMM method showed a performance improvement of more than 2.4 times compared to the non-optimized GEMM method. The inference performance of our DarkNet framework has also improved by at least 2.3 times.

Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motions from Recent Earthquake near the Backryoung Island (최근 백령도해역 발생지진의 지진원 및 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.274-281
    • /
    • 2011
  • We analysed ground motions form Mw 4.3 earthquake around Backryoung Island for the seismic source focal mechanism and horizontal response spectrum. Focal mechanism of the Backryoung Islands area was compared to existing principal stress orientation of the Korean Peninsula and horizontal response spectrum was also compared to those of the US NRC Regulatory Guide (1.60) and the Korean National Building Code. The ground motions of 3 stations, including vertical, radial, and tangential components for each station, were used for grid search method of moment tensor seismic source. The principal stress orientation from this study, ENE-WSW, is consistent fairly well with that of the Korean Peninsula. The horizontal response spectrum using 30 observed ground motions analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). Response spectrum of 30 horizontal ground motions were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal response spectrum revealed higher values for frequency bands above 3 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed higher values for the frequency bands below 0.8 second than the Korean Standard Response Spectrum (SD soil condition). However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the higher frequency bands.

Effects of the Combination Herbal Extract on Working Memory and White Matter Integrity in Healthy Individuals with Subjective Memory Complaints : A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

  • Kwon, Oran;Lee, Sunho;Ban, Soonhyun;Im, Jooyeon J.;Lee, Doo Suk;Lee, Eun Hee;Kim, Joohee;Lim, Soo Mee;Lee, Sang Gon;Kang, Ilhyang;Kim, Kyung-Hee;Yoon, Sujung;Lee, Sun Hea
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.63-77
    • /
    • 2015
  • Objectives The combination extract of four kinds of herbs, Gastrodia elata, Liriope platyphylla, Dimocarpus longan, and Salvia miltiorrhiza, has shown to have memory improving effects in mice. The aim of this study was to investigate the efficacy and safety of the herbal mixture for improving working memory as well as microstructural changes in white matter integrity in individuals with subjective memory complaints. Methods Seventy-five individuals with subjective memory complaints were assigned to receive either placebo (n = 15) or herbal mixture (low-dose group, n = 30 and high-dose group, n = 30) supplementation in an 8-week, randomized, double-blind, placebo-controlled clinical trial. Changes in working memory performance and fractional anisotropy (FA) values reflecting white matter integrity from baseline to 8-week endpoint were assessed. Results The herbal mixture group showed an increase in working memory performance compared to the placebo group (p for interaction = 0.001). In addition, the herbal mixture group showed an increase in FA values in the temporo-parietal regions (corrected p < 0.05), which are crucially involved in working memory function and are among the most affected regions in patients with cognitive impairments. Conclusions Findings from this study indicate that the herbal mixture may be a promising therapeutic option for individuals with subjective memory complaints.

AB9: A neural processor for inference acceleration

  • Cho, Yong Cheol Peter;Chung, Jaehoon;Yang, Jeongmin;Lyuh, Chun-Gi;Kim, HyunMi;Kim, Chan;Ham, Je-seok;Choi, Minseok;Shin, Kyoungseon;Han, Jinho;Kwon, Youngsu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.491-504
    • /
    • 2020
  • We present AB9, a neural processor for inference acceleration. AB9 consists of a systolic tensor core (STC) neural network accelerator designed to accelerate artificial intelligence applications by exploiting the data reuse and parallelism characteristics inherent in neural networks while providing fast access to large on-chip memory. Complementing the hardware is an intuitive and user-friendly development environment that includes a simulator and an implementation flow that provides a high degree of programmability with a short development time. Along with a 40-TFLOP STC that includes 32k arithmetic units and over 36 MB of on-chip SRAM, our baseline implementation of AB9 consists of a 1-GHz quad-core setup with other various industry-standard peripheral intellectual properties. The acceleration performance and power efficiency were evaluated using YOLOv2, and the results show that AB9 has superior performance and power efficiency to that of a general-purpose graphics processing unit implementation. AB9 has been taped out in the TSMC 28-nm process with a chip size of 17 × 23 ㎟. Delivery is expected later this year.

A Study on Comparison and Application of Numerical Models to Experiments in Discontinuous Rock Mass (불연속성 암반에서의 수치모델 검토 및 시험과의 비교.적용에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • In general, there are various approaches available in literature to model discontinuous rock masses and engineers are often confused which one to use for designing structures in rock masses. Modelling rock masses can be classified mainly into two approaches. One is discrete modelling of intact rock and discontinuities and the other is the equivalent continuum modelling. In this study five models are selected ;(1) Crack tensor model, (2) Equivalent volume defect model, (3) Damage model, (4) Micro - structure model (Parallel model and Series model), and (5) Homogenization model. Most of these models are mainly concerned with how to define additional strain due to discontinuities over the representative elementary volume (REV) and how to relate the stress field of discontinuities to that acting on the REV. The characteristics of these models are clarified by comparing with results of some laboratory tests.

  • PDF

ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS

  • Shaikh, Absos Ali;Kim, Young-Ho;Hui, Shyamal Kumar
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.669-689
    • /
    • 2011
  • The notion of quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasi-umbilical hypersurfaces. For instance, the Robertson-Walker spacetimes are quasi-Einstein manifolds. The object of the present paper is to study Lorentzian quasi-Einstein manifolds. Some basic geometric properties of such a manifold are obtained. The applications of Lorentzian quasi-Einstein manifolds to the general relativity and cosmology are investigated. Theories of gravitational collapse and models of Supernova explosions [5] are based on a relativistic fluid model for the star. In the theories of galaxy formation, relativistic fluid models have been used in order to describe the evolution of perturbations of the baryon and radiation components of the cosmic medium [32]. Theories of the structure and stability of neutron stars assume that the medium can be treated as a relativistic perfectly conducting magneto fluid. Theories of relativistic stars (which would be models for supermassive stars) are also based on relativistic fluid models. The problem of accretion onto a neutron star or a black hole is usually set in the framework of relativistic fluid models. Among others it is shown that a quasi-Einstein spacetime represents perfect fluid spacetime model in cosmology and consequently such a spacetime determines the final phase in the evolution of the universe. Finally the existence of such manifolds is ensured by several examples constructed from various well known geometric structures.

The Effect of Femoral Anteversion on Composite Hip and Thigh Muscle EMG Amplitude Ratio During Stair Ascent

  • Nam, Ki-Seok;Park, Ji-Won;Chae, Yun-Won
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.111-119
    • /
    • 2005
  • The purpose of this study was to compare the differences of hip and thigh muscle activities between subjects with increased and decreased femoral anteversion during stair ascent. Twelve healthy female volunteers participated in this study. The subjects were divided into two groups (group 1 with increased anteversion of the hip, group 2 with decreased anteversion of the hip). This study analyzed differences in each mean peak gluteus maximus (GM), gluteus medius (GD) and tensor fascia lata (TLF) EMG amplitude: composite mean peak hip muscles (GM, GD, TFL) EMG amplitude ratios and in each mean peak vastus medialis oblique (VMO), vastus lateralis (VL), biceps femoris (HM) and semitendinosus (HL) EMG amplitude: composite thigh muscles (VMO, VL, HM, HL) EMG amplitude ratios among subjects with decreased or increased relative femoral anteversion. EMG ratios were compared in the stance and swing phase of stair ascent. Group 1 showed an increased standardized mean GM and GD EMG amplitude and decreased standardized mean TFL to composite mean hip muscles EMG amplitude ratios in stair ascent during both stance and swing phase. Also, group 1 showed an increased standardized mean HL EMG amplitude and decreased standardized mean VL and HM to composite mean thigh muscles EMG amplitude ratios in stair ascent during both stance and swing phases. There was no statistically significant difference in vastus medialis oblique between subjects with increased or decreased relative femoral anteversion. In order to provide rehabilitation professionals with a clearer picture of the specific requirements of the stair climbing task, further research must be expanded to include a wider range of age groups that represent the general public, such as including middle-aged healthy persons.

  • PDF

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Study on the Coefficient of Thermal Expansion for Composites Containing 3-Dimensional Ellipsoidal Inclusions (3차원적 타원 형태의 충전제를 함유하는 복합체의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.206-214
    • /
    • 2007
  • The theoretical study is developed for predicting the thermal expansion changes of composites which include complex inclusion, which is used three-dimensional ellipsoid model ($a_1>a_2>a_3$), which has two aspect ratios (the primary aspect ratio, $\rho_{\alpha}=a_1/a_3$ and the secondary aspect ratio, $\rho_{\beta}=a_1/a_2$). We can predict the feature of general thermal expansion factors by theoretical approach of matrix with aligned ellipsoidal inclusion using the Eshelby's equivalent tensor. The coefficients of longitudinal linear thermal expansion ${\alpha}_{11}$ decrease to those of inclusions, ${\alpha}_f$, as both aspect ratios increase. The coefficients of transverse linear thermal expansion of composites ${\alpha}_{33}$ initially increase and show the parabolic corves with maximum values, as the concentrations of filler increase. The coefficient of thermal expansion, ${\alpha}_{22}$ in the transverse direction decreases, as $\rho_{\alpha}$ increases, however, ${\alpha}_{22}$ increases as $\rho_{\beta}$ increases. The coefficient of linear thermal expansion of composites, ${\alpha}_{33}$ in the normal direction increases, as $\rho_{\alpha}$ increases, while ${\alpha}_{33}$ decreases as $\rho_{\beta}$ increases.