
ETRI Journal. 2020;42(4):491–504.	﻿	   |  491wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Sustained technological advances have progressively yielded
more powerful and efficient computing capabilities facilitat-
ing the recent realization of artificial intelligence (AI) for a
wide range of real-world applications. This has sparked sub-
stantial interest and research in the field with improved neural
networks (NNs) achieving breakthrough results developed in
rapid succession.

New networks—each with their own features and ben-
efits—are introduced, yet they all must be executed by a
hardware computing platform. It is has become evident that
von Neumann-based general-purpose CPUs are inherently

ill-suited for the efficient execution of the massively paral-
lel and data hungry computational tasks required in NNs.
The parallelization capabilities of general-purpose graph-
ics processing units (GPGPUs) have resulted in their emer-
gence as the default medium for AI computing. However,
GPGPUs were originally designed and optimized for
graphics processing, which possesses a different comput-
ing profile than NNs. GPGPUs are limited by a memory
bandwidth bottleneck, where more time is spent moving
the large quantity of parameters required for NN compu-
tation instead of the computations itself. Furthermore, the
use of power-hungry GPGPUs has been shown to be costly
in server systems and infeasible for embedded applications

Received: 16 April 2020  |  Revised: 15 June 2020  |  Accepted: 2 July 2020

DOI: 10.4218/etrij.2020-0134

S P E C I A L I S S U E

AB9: A neural processor for inference acceleration

Yong Cheol Peter Cho   | Jaehoon Chung  | Jeongmin Yang  | Chun-Gi Lyuh  |
HyunMi Kim   | Chan Kim  | Je-seok Ham  | Minseok Choi  | Kyoungseon Shin  |
Jinho Han   | Youngsu Kwon

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

AI Processor Research Team, AI SoC
Research Department, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea

Correspondence
Yong Cheol Peter Cho, AI Processor
Research Team, AI SoC Research
Department, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea.
Email: cho@etri.re.kr

Funding information
This research was supported by the
Institute of Information & Communications
Technology Planning & Evaluation
(IITP) grant funded by the Korean
government (MSIT) (No. 2018-0-00195,
Artificial Intelligence Processor Research
Laboratory).

We present AB9, a neural processor for inference acceleration. AB9 consists of a
systolic tensor core (STC) neural network accelerator designed to accelerate artificial
intelligence applications by exploiting the data reuse and parallelism characteristics
inherent in neural networks while providing fast access to large on-chip memory.
Complementing the hardware is an intuitive and user-friendly development envi-
ronment that includes a simulator and an implementation flow that provides a high
degree of programmability with a short development time. Along with a 40-TFLOP
STC that includes 32k arithmetic units and over 36 MB of on-chip SRAM, our base-
line implementation of AB9 consists of a 1-GHz quad-core setup with other various
industry-standard peripheral intellectual properties. The acceleration performance
and power efficiency were evaluated using YOLOv2, and the results show that AB9
has superior performance and power efficiency to that of a general-purpose graphics
processing unit implementation. AB9 has been taped out in the TSMC 28-nm process
with a chip size of 17 × 23 mm2. Delivery is expected later this year.

K E Y W O R D S

AI SoC, inference, neural network accelerator

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0002-3947-6984
https://orcid.org/0000-0003-4105-7639
https://orcid.org/0000-0002-0655-320X
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:cho@etri.re.kr

492  |     CHO et al.

on edges. This has led to the emergence of a new market of
semiconductors that are custom designed and optimized for
the acceleration of NN computations. Hardware engineers
are tasked with making design decisions on trade-offs that
balance hardware performance, cost, power efficiency,
complexity, and so on with flexibility (a variety of NNs
that can be accelerated).

In this paper, we introduce AB9, a quad-core system-
on-chip (SoC) that includes a systolic tensor core (STC),
an accelerator for NN inference computations. The STC
employs a systolic array (SA) populated with sophisticated
and highly configurable processing elements capable of
almost all computations that take place within a normal
neural net layer [multiply-accumulate (MAC) operations,
linear activations, rectified linear units (ReLUs), max pool,
bias, normalization, and so on], allowing for all computa-
tions for a layer to take place within the SA in one iter-
ation. Furthermore, address generation hardware provides
synchronized addresses cycle-by-cycle for each data access,
removing the need for data manipulation routines such as
im2col that are commonly employed to prepare prearranged
data to an SA. Complementing AB9 and the STC is a devel-
opment environment that provides users with an STC com-
piler (STC-C) and STC simulation engine (STC-SE), both
integrated in an intuitive and concise tool flow to expedite
application implementation.

The STC accelerator was carefully designed to meet the
following goals:

1.	 Accelerator generality/robustness for a variety of neural
nets

2.	 Concise, intuitive, and effective development environment
3.	 Accelerator performance

The remainder of this paper is organized as follows.
Section 2 describes the hardware architecture of AB9, mostly
focusing on the STC accelerator. Section 3 describes the devel-
opment environment. Section 4 presents an implementation

case study using YOLOv2. Section 5 discusses the results
obtained from AB9 with an emphasis on the STC accelerator.

2  |   AB9 HARDWARE
ARCHITECTURE

The AB9 SoC includes four Aldebaran cores [1] that run the
32-bit SPARC instruction set architecture (ISA) at 1 GHz.
Two of the four cores in the quad-core setup can be config-
ured to run in the lock-step mode for safety critical appli-
cations [2]. The AB9 SoC was designed for both embedded
and server environments. The SoC is equipped with two
LPDDR4 memory controllers, each with a bandwidth of up
to 170 Gbps as well as a PCIe interface. The AB9 SoC is
implemented using TSMC 28-nm process technology with a
chip area of 17 × 23 mm2. Figure 1 shows a block diagram of
the major components in AB9. The notable industry-standard
peripheral intellectual properties (IPs) included in AB9 are
listed in Table 1. The remainder of this section describes the
STC accelerator and its components in detail.

2.1  |  Systolic tensor core

The compute profiles of NNs indicate that the computations
in the convolutional and fully connected layers are the domi-
nant contributors to poor performance [3]. Computations
in both the convolutional and fully connected layers can be
expressed in matrix form as General Matrix Multiplication
(GEMM) operations.

The STC NN accelerator (Figure 2) employs a 128 × 128
SA of neural processing (NP) elements to perform the GEMM
operations required for fully connected and convolutional
layers. Computations are performed in 16-bit half-precision
floating-point congruent with research that indicates half pre-
cision to be sufficient in the range for maintaining negligible
accuracy loss during inference [4].

F I G U R E 1   AB9 SoC block diagram

NoC

AB9 SoC

APB

AXI

External I/F

VIM VOM

QEIRTC

SPI

SJTAG

I2C

INTC

CAN

FMC SDC

DMA

S0

FMC

S1

LPDDR4
CTRL 1

S3

M0

AB Dual-Core
w. Fault-Tolerance

AB Core AB Core

M2

VIM

M4

VOM

M1

DMA

M3

SDC

M5

SJTAG

LPDDR4
CTRL 0

S2

M6

S5
STC

M7

S4
PCIe

T A B L E 1   AB9 IPs

Symbol Description Symbol Description

DMA Direct memory access FMC Flash memory
controller

VIM Video input module I2C I2C interface

VOM Video output module INTC Interrupt
controller

SPI Serial peripheral
interface

QEI Quadrature
encoder
interface

SDC SD card interface CAN CAN bus
interface

SJTAG SJTAG interface RTC Real-time clock

     |  493CHO et al.

The systolic approach allows for maximum data reuse
and parallelization of computations. Data reuse mitigates
the well-documented memory bandwidth performance bot-
tleneck that plagues NN computation. Section 2.5 describes
the SA in detail, while Section 2.6 discusses the design of the
NPs, which are the processing element nodes that populate
the SA.

The resulting data output from the SA and the input oper-
ands are stored in over 36 MB of on-chip SRAM within the
data controller (DC) module. The DC module is responsible
for storing and managing data, delivering commands and op-
erand data to the SA, and satisfying data transaction requests
from memory mover (MM) modules. The MM modules pro-
vide direct memory access (DMA) functionality, transferring
data between memory in the DC module and the external
Advanced eXtensible Interface (AXI) bus. Sections 2.3
and 2.4 detail the function and design of the MM and DC
modules.

The STC accelerator is centrally controlled by a flow con-
troller (FC) module. The FC instructions dispatched by the
host determine its behavior. These include initiating MM data
transfer operations, initiating the operand and NP instruction
sequence input to the SA, and managing the addresses of where
data should preside. Section 2.2 describes the FC in detail.

2.2  |  Flow controller

The FC module is the central controller of the STC. The
FC module consists of the following submodules shown
in Figure 3: FC control (FC_Control), FC command queue
(FC_CMD_Q), NP sequence table (FC_NPSEQ), and ad-
dress generator (FC_AG).

Operation is initiated by the host notifying FC control
of the address and quantity of FC instructions to read from
DDR4 memory. FC control issues and receives FC instruc-
tions via the AXI bus to fill the FC_CMD_Q first-in first-
out (FIFO) buffer. The FC instructions are 32-bit long,
and new instructions are introduced to the FIFO as older
instructions are consumed. FC_ Control decodes the 32-
bit instructions that are populated by the instruction types
listed in Table 2.

The consecutive-write-command (CWC) instruction
is encoded with the number of instructions to transfer (n)
and the destination subblock (FC_AG, FC_NPSEQ, MM).
Execution of the CWC instruction results in n subsequent en-
tries in the FC_CMD_Q FIFO buffer being sent to the spec-
ified subblock. The CWC instruction is used to transfer task
parameters to the MM and FC_AG and to populate the NP se-
quence table (FC_NPSEQ). The NP sequence table is stored
in 1024 × 32-bit memory containing 32-bit NP commands.

The NPSEQ instruction transfers the NP commands
stored in FC_NPSEQ to the SA via the DC module. Encoded
in the instruction are the start address, the end address, and
the number of iterations. Entries within the range of the start
and end addresses in FC_NPSEQ are sent to the DC for the
number of iterations encoded in the instruction. NPSEQ
transfers can be interrupted by stalls from events such as
DC buffer memory bank conflict, in which case transfers are
paused until the stall is resolved.

The PROBE instruction enables the host to check the cur-
rent status of other modules in the STC accelerator. Status
information is used to control the STC execution flow and is
conveyed via flags that signify operation start, operation end,
and operation in progress.

F I G U R E 2   STC block diagram [Colour figure can be viewed at
wileyonlinelibrary.com]

FC

DC

M
M

0

SA
NP NP NP NP NP

NP NP NP NP NP

NP NP NP NP NP

NP NP NP NP NP

DC Buffer

DC Buffer

DC Buffer

DC Buffer

DC Buffer

M
M

1

M
M

2

M
M

3

M
M

4

STC

AXI Interface

MM-DC data transfer signals

FC MM control signals

FC DC Control signals

DC-SA data + command signals

FC:
AG:
MM:
DC:
SA:
NP:

Flow Controller
Address Generator
Memory Mover
Data Controller
Systolic Array
Neural Processing element

F I G U R E 3   STC flow controller block diagram [Colour figure can be viewed at wileyonlinelibrary.com]

FC
FC_CMD_Q
1024x32b FIFO

FC_Control

FC_AG

FC_NPSEQ
1024x32b memory

DMA requests to MM

NP Commands to SA via DC

Data Read/Write
Addresses to DC

AXI read request to fill
FC CMD_Q

Incoming AXI read
data

Probes other modules

FC_Control:
FC_CMD_Q:
FC_NPSEQ:
FC_AG:

FC Control
FC Command Queue
NP Sequence Table
Address Generator

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

494  |     CHO et al.

2.2.1  |  Address generator

The address generator (AG) is a submodule of the FC that
generates the sequential DC buffer memory addresses of the
input, output, and weight data for the dataflow between the
SA and the DC.

Memory address information is sent to the DC synchro-
nized with the issuing of the corresponding NP commands
(NPSEQ). Addresses are generated with logic circuitry based
on a programmable n-dimension nested loop, with parameters
to match the input, output, and weight data. For the example
convolutional layer in Figure 4, the pseudocode for the sev-
en-dimensional nested loop for input dataflow control is shown
in Figure 5. Each loop represents the iterations of the following:

•	 I loop: weight/input data channel direction
•	 J loop: weight data width direction
•	 K loop: weight data height direction
•	 L loop: input data pooling width direction
•	 M loop: input data pooling height direction
•	 N loop: input data sliding window width direction
•	 O loop: input data sliding window height direction

Among other parameters, the initial values for the number
of iterations for the seven loops (*_LOOP), seven offset val-
ues (*_INC), and start address (*ADDR) are configured by
FC control. In this example, I_LOOP and I_INC in Figure 5
correspond to “Ci” and “Wi × Hi” in Figure 4, respectively.

After the initial address, subsequent addresses are sequen-
tially calculated during run-time.

The programmability of the loop dimensions of the AG
design enables its functionality to be applicable to various
NNs, while performance is maximized with the optimal
loop parameters that are determined during compile time.

Compared to methods that require data manipulation (re-
ordering or redundant data in memory) for “im2col”-like
functionality, this AG design conserves memory usage,
bandwidth, and manipulation overhead by generating syn-
chronized addresses based on the parameters to retrieve and
store data in the DC buffers when necessary.

2.3  |  Memory mover

The MM modules are DMA blocks that interface data trans-
fer between the STC internal memory (DC buffer) and the
external bus. The STC consists of five MMs. In the stan-
dalone mode, MM0 and MM1 are used to transfer the input
image data and kernel data into DC buffers, while MM3 is
used to output the resulting data from the STC to the external
interfaces. In the server mode, MM4 is used as an AXI slave
port for the PCIe interface.

2.4  |  Data controller

The DC module has the following three main functions:

1.	 Manage input operand, weight values, and output data
in the DC buffers.

T A B L E 2   FC instructions

Type Description

CWC (Consecutive-Write-
Command)

Transfer multiple units of control
data to FC subblock or MM

NPSEQ Send NP commands to SA

PROBE Probe status of subblock

WAIT_N Wait N clock cycles

TERM Terminate into idle state

F I G U R E 4   Input, weight, output data loop parameters of a
convolutional layer [Colour figure can be viewed at wileyonlinelibrary.
com]

F I G U R E 5   Pseudocode of the address generator with the seven-
dimensional nested loop. (Pooling and sliding window parameters not
shown.)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

     |  495CHO et al.

2.	 Satisfy MM data requests to read/write to/from the DC
buffer.

3.	 Manage the data flow to and from the SA according to the
parameters and control signals from the FC.

Figure 6 shows the DC and SA for the first five rows. Each
row of the SA is allotted with a DC buffer of 256 kB di-
vided into eight banks for a total of 32 MB for all 128 rows.
Different DC buffer banks can be simultaneously accessed.
Three systolic register chains (eight stages, 16 rows per stage)
transfer requests and data between the DC buffers and the
MM modules. Parameters and control signals from the FC
are propagated row-by-row in systolic fashion. Information
received from the FC includes control and configuration in-
formation for the DC, feature map/weight addresses for input
to the SA, output data addresses to save data from the SA,
NP commands to be issued to the SA, and so on. Data can
be rerouted to/from the DC buffers of the neighboring rows
when necessary.

The DC module also includes an activation unit (AU)
in each row for the computation of nonlinear activation
functions using a 2 kB configurable look-up table (LUT).
Output data from the SA can either bypass or be fed into
the AU.

2.5  |  Systolic array

The SA consists of 128 × 128 (NP) elements, each of which
is connected to NP elements to propagate feature map/weight

data, output data, and carry out NP commands in a systolic
fashion. Feature map data and NP commands are propagated
from left to right, weight data are propagated from top to
bottom, and output data are propagated from right to left.
The feature map data are fed into the array via the left-most
column, and the weight kernels are fed fed into the NP ele-
ments of the first row from the top. The output data exit via
the NP elements in the left-most column and are transmitted
to the DC.

2.6  |  Neural processing element

Most SA architectures in other systems use processing ele-
ments that are only capable of MAC computations. The NP
in AB9 is more sophisticated and highly configurable, allow-
ing much more than just MAC operations within the process-
ing element of the SA (additional registers for intermediate
value storage, maximum value detection, pooling, compari-
son, ReLUs, and so on). This allows for almost all computa-
tions (except nonlinear activations that occur in the AU) that
take place in a layer to be executed within the NP without
additional iterations.

The NP elements that populate the SA are highly
configurable cores that can be programmed to perform
a variety of operations. NP behavior is dictated by the
NP commands that are fed into the SA from the DC and
propagated left to right to a neighboring NP element, as
shown in Figure 7. Input feature operands travel through
NP elements left to right (A operand in Figure 7), while

F I G U R E 6   STC block diagram showing the DC and NPs for the first five rows [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

496  |     CHO et al.

weight operands travel top to bottom (B operands).
Output data are relayed to the DC module from right
to left (Z signal in Figure 7). Operands and the corre-
sponding control signals are synchronized. Each NP in-
cludes one half-precision floating-point adder and one
multiplier in two pipelined stages. Signals propagate to
neighboring NP elements in one cycle. Feedback routes
enable the use of data in the Z registers as the operand
inputs of the multiplier and adder. Structural hazards that
may occur when using the feedback routes are taken into
account when generating NP commands during compile
time. The NP design is highly programmable, where the
control information encoded in the NP commands for
the nine NP multiplexors enables flexible control of the
datapath to execute computations for a variety of NN
layer types.

Figure 8 shows how the NP elements can be configured to
operate for a MAC operation. Active signals are color-coded
by the pipeline stage at which they are active, while inac-
tive signals are faded gray. The control settings encoded in
the NP command in cntrl_r0 determine the active signals

shown in red by setting the red multiplexor select signals
(mul_a_sel, mul_b_sel, P_reg_in_sel). In this case, input
operands A and B from neighboring NP elements (as op-
posed to data saved in the Z registers Z0_reg, Z1_reg) are
fed into the multiplier, and the resulting product is stored
in the P register (P_reg). Similarly, the NP command in
cntrl_r1 configures the green multiplexor select signals
to accumulate the product in P_reg to the value in Z0_reg
and store the results back in Z0_reg. Output values (Z_out)
can be configured to be from registers Z0_reg and Z1_reg
or from Z_in_reg, which holds the values relayed from the
neighboring NP element to the right.

3  |   DEVELOPMENT
ENVIRONMENT

The application development environment is designed to be
intuitive and efficient for nonexpert users. The development
environment includes STC-C and STC-SE, as shown in the
tool flow presented in Figure 9.

F I G U R E 7   NP block diagram [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

     |  497CHO et al.

3.1  |  STC compiler

The main function of STC-C is to generate the commands
that drive the STC accelerator in order to provide maximum
performance for the target application. The three main func-
tional steps of STC-C are shown in color in Figure 10 and
consist of (a) parsing configurations (blue), (b) a scheme for
the selection of optimal parameters and scheduling (yellow),
and (c) command generation (green).

In the first step, STC-C parses three configuration files, as
shown in Figure 9: a neural net description file (.stcnn,.pro-
totxt, ONNX, and so on), a file with hardware structure infor-
mation (.stchw), and a compile option file (.stccc). The second
step involves the selection of the optimal scheduling schemes
and parameters based on the parsed configuration by compar-
ing the STC performance under configurations with variations
in the operational parameters that include tiling, memory allo-
cation, batch size, and hardware operation scheduling.

Tiling of the weight data is based on the number of
weights processed in parallel in the SA columns. The input
and output data tiling decisions are based on the required
and available DC buffer memory for the storage of the input,
output, and weight data and the batch size. The memory al-
location algorithm assigns the input, output, and weight data
to the specific banks in the DC buffer on the basis of the
data size and bandwidth parameters. The tiling and memory

allocation algorithms ultimately produce parameters that
optimize the bandwidth and memory utilization. The hard-
ware operation scheduling algorithm determines the optimal
scheme by maximizing the number of parallel computations
and concurrently accessible DC buffer banks. The algorithms
are optimized on the basis of the three operation parameters
but are cohesively streamlined into STC-C because each
parameter can influence the other two parameters. Further
optimizations such as subsequent layer prefetching during
the SA operation of a current layer using a double buffering
scheme, multichip execution, and data reuse between layers
to minimize memory access are performed by STC-C.

STC command sequences by the layer are generated in the
final step on the basis of the optimal parameters determined
in the second step, producing three output files: a command
sequence file (cmd.h), user-defined file (user.h), and main
function file (reference_top.c). The command sequence file in-
cludes STC commands by layer in the one-dimensional (1D)
array format. The user-defined file lists variables defined by the
application, such as the external memory address of data. The
main function file guides the main code to call the command
sequence file for the application user and will be described in
Section 4.

The order and period of data fetching and computations
are produced by STC-C during compilation and hence
are deterministic. STC-C is therefore able to produce

F I G U R E 8   NP operation example [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

498  |     CHO et al.

commands that control the power gating circuitry, reduc-
ing power consumption by powering off sections of the SA
when idle. The time required for power gating toggling to
actually take effect is considered (owing to the cell/wire

delay of the header cells). Power gating is switched off in
advance to eliminate any delay resulting from the power
gating scheme. If the SA idle time between two active pe-
riods is less than the time for the power gating circuit to

F I G U R E 9   AB9 SDK tool flow [Colour figure can be viewed at wileyonlinelibrary.com]

gcc

Neural Net
description

<.stcnn, .prototxt,
ONNX, etc>

STC HW
<.stchw>

Input Data
<input feature,

weight>

STC CMD Compiler (STCCC)

User define
variables
<user.h>

Reference
main func.

<all_layer_top
.c>

Simulator
Top

<sim_top.c>

STC Simulator Engine
(STCSE)

<stcse.lib(.a)>

STC Simulator
Test vectors
Performance

…

Application
S/W

<app.c>

Device Driver
API for

Aldebaran
<.lib/.c/.h>

Executable binary
file

<app.elf>
Object detect

gcc

Compile option
<.stccc>

STC Command
<cmd.h>

F I G U R E 1 0   STC-C functional steps [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

     |  499CHO et al.

switch on and off, power is maintained to avoid perfor-
mance loss.

3.2  |  STC-SE

STC-SE is used to analyze the performance of the STC ac-
celerator for a specific NN and to verify the command files
generated by STC-C. All of the key components are mod-
eled, including the DDR4 memory, Aldebaran core, PCIe
interface, and the network-on-chip (NoC).

STC-SE was developed to enable accurate cycle-level
simulation for the STC and transaction-level verification for
the data exchange between DDR memory and on-chip mem-
ory. For verification, the weight and input data are loaded
into memory, the STC model is run for each layer, and the
generated result is compared to the reference output data.

STC-SE is implemented in the form of a library and can
be executed by compiling with command files generated by

STC-C and C code for model generation to generate and run
an executable file. It was designed to maximize the utiliza-
tion of the processor resources of the system running STC-SE
by running the host central processing unit (CPU), AB9, and
STC models simultaneously via multithreading functions.

4  |   CASE STUDY: YOLOv2

This section describes the development of an application
using YOLOv2 [5] as an example.

4.1  |  AB9 bare-metal application
implementation: YOLOv2

YOLOv2 for a 416 × 416 image was implemented in a bare-
metal environment. The original YOLOv2 program was con-
verted into a bare-metal version. The network configuration

T A B L E 3   STC-C results for YOLOv2

Layer # Layer Type
Data
Tiling

Weight
Tiling

Memory allocation (subblock #)
Input
load

Output
storeWeight 0 Weight 1 Input Output

0,1 Conv + Pool 2 1 0 2–3 4–7 √ √

2,3 Conv + Pool 2 1 1 4–7 2–3 √ √

4 Conv 2 1 0 2–3 4–7 √ √

5 Conv 2 1 1 4–7 2–3 √ √

6, 7 Conv + Pool 1 1 0 2–5 6–7 √

8 Conv 1 2 1 6–7 2–5

9 Conv 1 1 1 0 2–5 6–7

10, 11 Conv + Pool 1 2 0 6–7 2–5

12 Conv 1 4 0 1 2 6–7

13 Conv 1 2 0 1 6–7 2

14 Conv 1 4 0 1 2 6–7

15 Conv 1 2 0 1 6–7 2

16 Conv 1 4 0 1 2 6–7 √ √

17 Pool 1 6–7 2 √

18 Conv 1 8 0 1 2 6–7 √

19 Conv 1 4 0 1 6–7 2

20 Conv 1 8 0 1 2 6–7

21 Conv 1 4 0 1 6–7 2

22 Conv 1 8 0 1 2 6–7

23 Conv 1 8 0 1 6–7 2–3

24 Conv 1 8 0 1 2–3 6–7 √

26 Conv 1 1 0 2–5 7 √ √

29 Conv 1 8 1 0 2–4 6–7 √

30 Conv 1 4 1 0 6–7 2 √
aColor shading shows when input load and output store are skipped because output data of one layer is used as the input of a subsequent layer.

500  |     CHO et al.

files were converted to static linked lists to enable the use of
the original parsing code. The operand data were converted
to 16-bit half-precision floating-point.

The convolutional and pooling layers are handled
by the STC hardware while the routing layers are ex-
ecuted by setting the output of a previous layer as the
input to the consuming layer (eg, layers 27 and 24 to layer
28). The reorg layer is executed by software running on
the Aldebaran core. Aldebaran core 0 issues the address
of the layer commands to the FC and waits until layer
processing is carried out before proceeding to the next layer.

4.2  |  STC acceleration of YOLOv2

STC-C generates commands to control the MM, FC, AG, and
NP elements. The data header file for the commands should be
defined in the actual application software using a #define state-
ment. The commands are in stccc_cmd.h. User-configured
#define statements must be provided in the stccc_user.h file
and included in the stccc_cmd.h file. The weight and layer out-
put buffer locations are set by the user, while the network input
buffers locations are determined by the compiler and linker.

The network_run() function invokes forward processing
and contains a for loop, where the layer processing function
“all_layer_top” is called layer-by-layer. Some software layers
are separately called in this loop. The all_layer_top function
receives the layer number, which is used to pass a pointer to
the command data and the length of the commands for the
layer to the STC hardware. Prior to calling the layer process-
ing to the hardware, the software resets a flag indicating layer
completion, and the interrupt service routine later sets the flag
so that the software can proceed to process the next layer.

4.3  |  STC-C decision result for YOLO2

Table 3 presents the tiling, memory allocation, and data reuse
results from STC-C for YOLOv2 with a batch size of 8 and a

batch height of 16. DC bank numbers (eight banks available per
row) are separately allocated for the input, output, and weight
data and are listed in the memory allocation column. Weight
has two columns because the weight data are prefetched by a
double buffering scheme expediting data fetching and reduc-
ing the SA idle time. The input/output data for layers 0–5 are
tiled owing to their large size. Interlayer data are reused as
much as possible to minimize the run-time by reducing the
movement of the data in and out of external memory. For the
last two columns, the cells are shaded in blue when input data
loading is skipped because the output data from the previous
layer are reused as input data for the current layer, while the
cells are shaded in yellow when output data storing is skipped
as the output data are reused as input data in the next layer.

5  |   RESULTS

To evaluate the performance of the AB9 SoC, we com-
pare its performance with that of other hardware accel-
eration platforms found in the literature. Two well-known
networks were chosen for measurement. Table 4 lists the
specifications of AB9. Table 5 shows the performance
when running VGG-19 [6], while Table 6 shows the per-
formance for YOLOv2 [5] with the standard 416 × 416
image size.

T A B L E 4   AB9 SoC specifications

Performance 40 TFLOPS,

Power 15 W–40 W

Die area 17 mm × 23 mm, 391 mm2

Transistor count ~1 billion

Process technology TSMC 28 nm

Frequency 1 GHz

Arithmetic units 32 768

On-chip memory >36 MB

Number representation 16-bit floating-point

T A B L E 5   VGG-19 comparison

fps Image Size Type Source

AB9 STC 74 256 × 256 SoC

Hisilicon Kirin 990 5G 32.5 256 × 256 SoC [7,8]

Snapdragon 855 Plus 5.5 256 × 256 SoC [7,8]

NVIDIA GTX 1080Ti 20.8 224 × 224 GPU [9]

Intel Dual Xeon E5-2630 0.277 224 × 224 CPU [9]

NVIDIA Titan RTX 12.2 256 × 256 GPU [7,8]

NVIDIA Tesla V100 16.4 256 × 256 GPU [7,8]

NVIDIA Titan X Pascal 9.26 256 × 256 GPU [7,8]

Edge TPU 3.25 256 × 256 SoC [10]

T A B L E 6   YOLOv2 comparison

fps Type Source

AB9 STC 100 SoC

Movidius 3 SoC [11]

NVIDIA Pascal Titan X 67 GPU [5]

NVIDIA Jetson TX2 7 GPU [5]

NVIDIA Xavier AGX 30 GPU [12]

NVIDIA GTX1080 28 GPU [12]

Xilinx FPGA with DPU 25 FPGA [12]

     |  501CHO et al.

From the results, we observe that the AB9 SoC exhibits a
higher fps than the other surveyed hardware. The advantage
in performance can be attributed to the hardware optimi-
zations customized for NN computations. This starts from
the robust flexibility and functionality of the custom pro-
cessing elements (NP) to the systolic architecture for data
reuse with address generation hardware that eliminates data
manipulation overhead, as well as the NN compilation envi-
ronment that provides the optimal configurations based on
NN parameters.

Table 7 lists the distribution of the STC execution time for
each YOLOv2 layer as well as the relative time that the SA
was active for that layer. We can observe that the SA is utilized
more often with batch parallelism during the later layers where
feature map size is reduced and the filter quantity is large. The
SA is active for about 52% of the total execution time.

A comparison of the power efficiency is rather difficult,
as comparable measurements are difficult to find and several
variables undermine evaluation on equal grounds. For the sake

of argument, public data on GPGPUs allow us to make as-
sumptions and estimates of power efficiency. The GPU power
can reach upward of 200 W depending on the workload. The
NVIDIA Pascal Titan X GPU is documented to consume
75 W when idle [13]. Using this as an optimistic assumption
with YOLOv2 at 67 fps, it consumes 1.117 J/frame, while the
AB9 SoC consumes 0.15–0.4 J/frame. The power efficiency
of the AB9 SoC can be attributed to the custom design for
NN acceleration, as opposed to the generality that the GPGPU
maintains for other applications.

Figure 11 shows the layout of the AB9 SoC, while
Figure 12 shows pictures of the actual SoC.

6  |   CONCLUSION

We have introduced the AB9 neural processor SoC that fea-
tures an STC NN accelerator for inference. Complementing
the hardware is a concise and effective development

T A B L E 7   AB9 execution time distribution for YOLOv2

Layer % Time
SA
Active Filters Size Input Output Type

0, 1 4.31% 23.48% 32 3 × 3 416 × 416 × 3 208 × 208 × 32 Conv + maxpool

2, 3 4.59% 35.10% 64 3 × 3 208 × 208 × 32 104 × 104 × 64 Conv + maxpool

4 6.70% 26.04% 128 3 × 3 104 × 104 × 64 104 × 104 × 128 Conv

5 3.71% 8.82% 64 1 × 1 104 × 104 × 128 104 × 104 × 64 Conv

6, 7 3.13% 55.11% 128 3 × 3 104 × 104 × 64 52 × 52 × 128 Conv + maxpool

8 4.12% 43.76% 256 3 × 3 52 × 52 × 128 52 × 52 × 256 Conv

9 1.86% 17.65% 128 1 × 1 52 × 52 × 256 52 × 52 × 128 Conv

10, 11 2.69% 61.91% 256 3 × 3 52 × 52 × 128 26 × 26 × 256 Conv + maxpool

12 3.40% 49.74% 512 3 × 3 26 × 26 × 256 26 × 26 × 512 Conv

13 1.80% 35.48% 256 1 × 1 26 × 26 × 512 26 × 26 × 256 Conv

14 3.40% 49.80% 512 3 × 3 26 × 26 × 256 26 × 26 × 512 Conv

15 1.82% 35.10% 256 1 × 1 26 × 26 × 512 26 × 26 × 256 Conv

16 3.39% 49.83% 512 3 × 3 26 × 26 × 256 26 × 26 × 512 Conv

17 1.21% 13.49% 26 × 26 × 512 13 × 13 × 512 Maxpool

18 5.90% 55.66% 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024 Conv

19 1.78% 71.89% 512 1 × 1 13 × 13 × 1024 13 × 13 × 512 Conv

20 5.90% 55.70% 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024 Conv

21 1.78% 71.89% 512 1 × 1 13 × 13 × 1024 13 × 13 × 512 Conv

22 5.89% 55.69% 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024 Conv

23 9.45% 69.01% 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024 Conv

24 9.44% 69.11% 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024 Conv

25 - - 26 × 26 × 512 Route

26 0.87% 18.87% 64 1 × 1 26 × 26 × 512 13 × 13 × 2048 Reorg

27 - - 13 × 13 × 3072 Route

28 11.23% 72.51% 1024 3 × 3 13 × 13 × 3072 13 × 13 × 1024 Conv

29 1.63% 69.12% 425 1 × 1 13 × 13 × 1024 13 × 13 × 425 Conv

502  |     CHO et al.

environment that includes a compiler and simulator engine.
With a custom design targeting NN acceleration, the STC
accelerator and its development environment are optimized
to enhance performance and efficiency while maintaining
programmability to accommodate various NN types. The
AB9 SoC uses TSMC 28-nm process technology with a
chip area of 17 × 23 mm2.

ORCID
Yong Cheol Peter Cho https://orcid.
org/0000-0002-3947-6984
Hyunmi Kim https://orcid.org/0000-0003-4105-7639
Jinho Han https://orcid.org/0000-0002-0655-320X

REFERENCES
	 1.	 ETRI Technology, Aldebaran microcontroller SoC for mobile

robot (low power MCU core technology), 2017, available at
https://www.etri.re.kr/eng/bbs/view.etri?b_board_id=ENG03​
&b_idx=16719

	 2.	 J. Han et al., A 1GHz fault tolerant processor with dynamic lock-
step and self-recovering cache for ADAS SoC complying with
ISO26262 in automotive electronics, in Proc. IEEE Asian Solid-
State Circuits Conf. (Seoul, Rep. of Korea), Nov. 2017, pp.
313–316.

	 3.	 Y. Jia, Learning semantic image representations at a large scale, Ph.D.
Thesis, EECS Department, Univ. of California, Berkeley, May 2014.

	 4.	 S. Gupta et al., Deep learning with limited numerical precision, Int.
Conf. Mach. Learn. 37 (2015), 1737–1746.

	 5.	 J. Redmon and A. Farhadi, Yolo9000: Better, faster, stronger, 2016,
available at https://arxiv.org/abs/1612.08242, preprint.

	 6.	 J. Kim, J. K. Lee, and K. M. Lee, Accurate image super-resolu-
tion using very deep convolutional networks, in Proc. IEEE Conf.
Comput. Vision Pattern Recognit. (Las Vegas, NV, USA), 2016,
pp. 1646–1654.

	 7.	 A. Ignatov et al., AI benchmark: All about deep learning on smart-
phones in 2019, in Proc. IEEE/CVF Int. Conf. Comput. Vision
Workshop (Seoul, Rep. of Korea), Oct. 2019, pp. 3617–3635.

	 8.	 AI-Benchmark, available at http://www.ai-bench​mark.com
	 9.	 J. Johnson. Benchmarks for popular CNN models, available at

https://github.com/jcjoh​nson/cnn-bench​marks
	10.	 Coral, Edge TPU performance benchmarks, available at https://

coral.ai/docs/edget​pu/bench​marks/
	11.	 T. Narayan and Intel AI Academy, A comparison of performance

of deep learning models on Edge using Intel Movidius Neural
Compute Stick and Raspberry PI3, available at https://medium.
com/intel​-stude​nt-ambas​sador​s/objec​t-detec​tion-a-compa​rison​
-of-perfo​rmanc​e-of-deep-learn​ing-model​s-on-edge-using​-intel​
-f66eb​7f45b17

	12.	 S. Hossain and D. Lee, Deep learning-based real-time multiple-ob-
ject detection and tracking from aerial imagery via a flying robot
with GPU-based embedded devices, Sensors 19 (2019), no. 15,
3371:1–3424.

	13.	 J. Guerreiro et al., Modeling and decoupling the GPU power con-
sumption for cross-domain DVFS, IEEE Trans. Parallel Distrib.
Syst. 30 (2019), no. 11, 2494–2506.

AUTHOR BIOGRAPHIES

Yong Cheol Peter Cho received his
BS degree in computer engineering
from the Pennsylvania State University
in 2005, his MS degree in computer
engineering from the University of
Southern California in 2009, and his
PhD degree in computer engineering

from the Pennsylvania State University in 2012. He is cur-
rently a senior researcher with the AI SoC Research
Department at the Electronics and Telecommunications
Research Institute in Korea. His research interests include
application-specific hardware accelerators, embedded
systems, and processor design.

F I G U R E 1 1   AB9 SoC layout [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 1 2   AB9 (A) die, (B) die on package, and (C) processor
[Colour figure can be viewed at wileyonlinelibrary.com]

https://orcid.org/0000-0002-3947-6984
https://orcid.org/0000-0002-3947-6984
https://orcid.org/0000-0002-3947-6984
https://orcid.org/0000-0003-4105-7639
https://orcid.org/0000-0003-4105-7639
https://orcid.org/0000-0002-0655-320X
https://orcid.org/0000-0002-0655-320X
https://www.etri.re.kr/eng/bbs/view.etri?b_board_id=ENG03&b_idx=16719
https://www.etri.re.kr/eng/bbs/view.etri?b_board_id=ENG03&b_idx=16719
https://arxiv.org/abs/1612.08242
http://www.ai-benchmark.com
https://github.com/jcjohnson/cnn-benchmarks
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
https://medium.com/intel-student-ambassadors/object-detection-a-comparison-of-performance-of-deep-learning-models-on-edge-using-intel-f66eb7f45b17
https://medium.com/intel-student-ambassadors/object-detection-a-comparison-of-performance-of-deep-learning-models-on-edge-using-intel-f66eb7f45b17
https://medium.com/intel-student-ambassadors/object-detection-a-comparison-of-performance-of-deep-learning-models-on-edge-using-intel-f66eb7f45b17
https://medium.com/intel-student-ambassadors/object-detection-a-comparison-of-performance-of-deep-learning-models-on-edge-using-intel-f66eb7f45b17
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

     |  503CHO et al.

Jaehoon Chung received his BS and
MS degrees in computer engineering
from Korea University, Seoul, Rep. of
Korea in 2015 and 2017, respectively.
He joined the Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea in 2017 and is

currently a researcher with the AI SoC Research Department.
His current research interests include deep learning acceler-
ators and low-power design.

Jeongmin Yang received his BS and
MS degrees in electrical engineering
from KAIST, Daejeon, Rep. of Korea in
2012 and 2014, respectively. Since 2014,
he has been working for the Electronics
and Telecommunications Research
Institute, Daejeon, Rep. of Korea, where

he is now a senior researcher with the AI SoC Research
Department. His main research interests are VLSI design
and AI processor architecture.

Chun-Gi Lyuh received his BS degree
in computer engineering from
Kyungpook National University,
Daegu, Rep. of Korea in 1998. He re-
ceived his MS and PhD degrees in
electrical engineering and computer
science from the Korea Advanced

Institute of Science and Technology, Daejeon, Rep. of
Korea in 2000 and 2004, respectively. He joined the
Electronics and Telecommunications Research Institute,
Daejeon, Rep. of Korea in 2004 and is currently a princi-
pal researcher with the AI SoC Research Department. His
current research interests include mobile deep learning
processor hardware and software development
environments.

HyunMi Kim received her BS and MS
degrees in electronic engineering from
Inha University, Incheon, Rep. of Korea,
in 2004 and 2006, respectively, and her
PhD degree in computer software from
the University of Science and
Technology, Daejeon, Rep. of Korea, in

2018. Since 2012, she has been with the Electronics and
Telecommunications Research Institute and is currently
with the AI SoC Research Department as a senior engineer.
Her research interests are in neural network systems, which
include AI processors and DL compilers, SoC architecture
design, optimization algorithms for SoC systems, and sig-
nal processing for multimedia applications.

Chan Kim received his BS degree in
electrical engineering from POSTECH
in 1991 and his ME degree in electrical
and electronic engineering from
KAIST in 1993. From 1993 to present,
he has been working at the Electronics
and Telecommunications Research

Institute in Daejeon, Rep. of Korea. His main research in-
terests are communication systems such as ATM, Ethernet,
3G-LTE, multigig wireless, 3D-TVs, and processor sys-
tems for automotive or deep learning. He used to develop
hardware (ASIC/board/driver) for almost 15 years but
these past years, he has been working on various system
and application software for developed systems (bare
metal, Linux, BusyBox, RTEMS, QEMU, etc).

Je-seok Ham received his BS degree in
electronics engineering from Kyungpook
National University, Daegu, Rep. of
Korea, in 2017. He received his MS de-
gree in bio and brain engineering from
the Korea Advanced Institute of Science
and Technology, Daejeon, Rep. of Korea

in 2019. Since 2019, he has been with the Electronics and
Telecommunications Research Institute, Daejeon, Rep. of
Korea, where he is now a researcher. His main research in-
terests are the BLAS library for parallel programming and
hardware accelerators for HPC processors.

Minseok Choi received his BS and MS
degrees in electrical and electronics en-
gineering from Korea Advanced
Institute of Science and Technology,
Rep. of Korea in 1997 and 1999 respec-
tively. He joined the Electronics and
Telecommunications Research Institute,

Rep. of Korea in 1999 and is currently a principal member of
the research staff. He has special interests in on-device deep
learning processor hardware and software development.

Kyoungseon Shin received his BS and
MS degrees in electrical engineering
from Chonbuk National University,
Jeonju, Korea in 1989 and 1991, respec-
tively. His MS work focused on built-in
self-test circuit design for the fast testing
of megabit DRAM. From 1991 to 1999,

he worked at LG Semiconductor Co., Ltd., Korea. While
working for LG Semiconductor, he was involved in designing
microcontroller units and the Micom Development System.
He joined the Electronics and Telecommunications Research
Institute, Daejeon, Rep. of Korea in 1999 and is currently a

504  |     CHO et al.

principal member of the research staff. His current research
interests include the development of artificial intelligence pro-
cessors, low-power embedded processors, and autonomous
driving processors.

Jinho Han received his BS, MS, and
PhD degrees from Korea Advanced
Institute of Science and Technology,
Rep. of Korea in 1998, 2001, and 2020,
respectively. He has been with the AI
Processor Research Section at the
Electronics and Telecommunications

Research Institute (ETRI), Rep. of Korea, since 2001. At
ETRI, he is a section leader and principal research staff of
the AI Processor Research Section devoted to the design
of the AI processor AB. He has special interests in ma-
ny-core architectures, AI processor design, low-power
processor design, fault tolerance design, and algorithmic
optimization of circuits and systems.

Youngsu Kwon received his BS, MS,
and PhD degrees from Korea Advanced
Institute of Science and Technology,
Rep. of Korea in 1997, 1999, and 2004,
respectively. He had been with
Microsystems Technology Laboratory,
Massachusetts Institute of Technology

as a postdoctoral associate from 2004 to 2005 and de-
signed three-dimensional FPGAs. He has been with the

AI SoC Research Department at the Electronics and
Telecommunications Research Institute (ETRI), Rep. of
Korea, since 2005. At ETRI, he is a director and principal
research staff of the AI SoC Research Department devoted
to the design of the AI processor AB. He has special in-
terests in many-core architectures, AI processor design,
low-power architecture design, computer-aided design,
and algorithmic optimization of circuits and systems. He
received the Presidential Prize from the Korean govern-
ment in 2016, official commendations from the Ministry
of Science and ICT as well as the Ministry of Industry
in 2016, the Excellent Researcher Award from the Korea
Research Council in 2013, the Industrial Contributor
Award from the Korean Federation of SMEs in 2013, and
medals from Samsung's Thesis Prizes in 1997 and 1999.

