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1  |   INTRODUCTION

Sustained technological advances have progressively yielded 
more powerful and efficient computing capabilities facilitat-
ing the recent realization of artificial intelligence (AI) for a 
wide range of real-world applications. This has sparked sub-
stantial interest and research in the field with improved neural 
networks (NNs) achieving breakthrough results developed in 
rapid succession.

New networks—each with their own features and ben-
efits—are introduced, yet they all must be executed by a 
hardware computing platform. It is has become evident that 
von Neumann-based general-purpose CPUs are inherently 

ill-suited for the efficient execution of the massively paral-
lel and data hungry computational tasks required in NNs. 
The parallelization capabilities of general-purpose graph-
ics processing units (GPGPUs) have resulted in their emer-
gence as the default medium for AI computing. However, 
GPGPUs were originally designed and optimized for 
graphics processing, which possesses a different comput-
ing profile than NNs. GPGPUs are limited by a memory 
bandwidth bottleneck, where more time is spent moving 
the large quantity of parameters required for NN compu-
tation instead of the computations itself. Furthermore, the 
use of power-hungry GPGPUs has been shown to be costly 
in server systems and infeasible for embedded applications 
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on edges. This has led to the emergence of a new market of 
semiconductors that are custom designed and optimized for 
the acceleration of NN computations. Hardware engineers 
are tasked with making design decisions on trade-offs that 
balance hardware performance, cost, power efficiency, 
complexity, and so on with flexibility (a variety of NNs 
that can be accelerated).

In this paper, we introduce AB9, a quad-core system-
on-chip (SoC) that includes a systolic tensor core (STC), 
an accelerator for NN inference computations. The STC 
employs a systolic array (SA) populated with sophisticated 
and highly configurable processing elements capable of 
almost all computations that take place within a normal 
neural net layer [multiply-accumulate (MAC) operations, 
linear activations, rectified linear units (ReLUs), max pool, 
bias, normalization, and so on], allowing for all computa-
tions for a layer to take place within the SA in one iter-
ation. Furthermore, address generation hardware provides 
synchronized addresses cycle-by-cycle for each data access, 
removing the need for data manipulation routines such as 
im2col that are commonly employed to prepare prearranged 
data to an SA. Complementing AB9 and the STC is a devel-
opment environment that provides users with an STC com-
piler (STC-C) and STC simulation engine (STC-SE), both 
integrated in an intuitive and concise tool flow to expedite 
application implementation.

The STC accelerator was carefully designed to meet the 
following goals:

1.	 Accelerator generality/robustness for a variety of neural 
nets

2.	 Concise, intuitive, and effective development environment
3.	 Accelerator performance

The remainder of this paper is organized as follows. 
Section 2 describes the hardware architecture of AB9, mostly 
focusing on the STC accelerator. Section 3 describes the devel-
opment environment. Section 4 presents an implementation 

case study using YOLOv2. Section  5 discusses the results 
obtained from AB9 with an emphasis on the STC accelerator.

2  |   AB9 HARDWARE 
ARCHITECTURE

The AB9 SoC includes four Aldebaran cores [1] that run the 
32-bit SPARC instruction set architecture (ISA) at 1 GHz. 
Two of the four cores in the quad-core setup can be config-
ured to run in the lock-step mode for safety critical appli-
cations [2]. The AB9 SoC was designed for both embedded 
and server environments. The SoC is equipped with two 
LPDDR4 memory controllers, each with a bandwidth of up 
to 170 Gbps as well as a PCIe interface. The AB9 SoC is 
implemented using TSMC 28-nm process technology with a 
chip area of 17 × 23 mm2. Figure 1 shows a block diagram of 
the major components in AB9. The notable industry-standard 
peripheral intellectual properties (IPs) included in AB9 are 
listed in Table 1. The remainder of this section describes the 
STC accelerator and its components in detail.

2.1  |  Systolic tensor core

The compute profiles of NNs indicate that the computations 
in the convolutional and fully connected layers are the domi-
nant contributors to poor performance [3]. Computations 
in both the convolutional and fully connected layers can be 
expressed in matrix form as General Matrix Multiplication 
(GEMM) operations.

The STC NN accelerator (Figure 2) employs a 128 × 128 
SA of neural processing (NP) elements to perform the GEMM 
operations required for fully connected and convolutional 
layers. Computations are performed in 16-bit half-precision 
floating-point congruent with research that indicates half pre-
cision to be sufficient in the range for maintaining negligible 
accuracy loss during inference [4].

F I G U R E  1   AB9 SoC block diagram
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T A B L E  1   AB9 IPs

Symbol Description Symbol Description

DMA Direct memory access FMC Flash memory 
controller

VIM Video input module I2C I2C interface

VOM Video output module INTC Interrupt 
controller

SPI Serial peripheral 
interface

QEI Quadrature 
encoder 
interface

SDC SD card interface CAN CAN bus 
interface

SJTAG SJTAG interface RTC Real-time clock
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The systolic approach allows for maximum data reuse 
and parallelization of computations. Data reuse mitigates 
the well-documented memory bandwidth performance bot-
tleneck that plagues NN computation. Section 2.5 describes 
the SA in detail, while Section 2.6 discusses the design of the 
NPs, which are the processing element nodes that populate 
the SA.

The resulting data output from the SA and the input oper-
ands are stored in over 36 MB of on-chip SRAM within the 
data controller (DC) module. The DC module is responsible 
for storing and managing data, delivering commands and op-
erand data to the SA, and satisfying data transaction requests 
from memory mover (MM) modules. The MM modules pro-
vide direct memory access (DMA) functionality, transferring 
data between memory in the DC module and the external 
Advanced eXtensible Interface (AXI) bus. Sections  2.3 
and 2.4 detail the function and design of the MM and DC 
modules.

The STC accelerator is centrally controlled by a flow con-
troller (FC) module. The FC instructions dispatched by the 
host determine its behavior. These include initiating MM data 
transfer operations, initiating the operand and NP instruction 
sequence input to the SA, and managing the addresses of where 
data should preside. Section 2.2 describes the FC in detail.

2.2  |  Flow controller

The FC module is the central controller of the STC. The 
FC module consists of the following submodules shown 
in Figure 3: FC control (FC_Control), FC command queue 
(FC_CMD_Q), NP sequence table (FC_NPSEQ), and ad-
dress generator (FC_AG).

Operation is initiated by the host notifying FC control 
of the address and quantity of FC instructions to read from 
DDR4 memory. FC control issues and receives FC instruc-
tions via the AXI bus to fill the FC_CMD_Q first-in first-
out (FIFO) buffer. The FC instructions are 32-bit long, 
and new instructions are introduced to the FIFO as older 
instructions are consumed. FC_ Control decodes the 32-
bit instructions that are populated by the instruction types 
listed in Table 2.

The consecutive-write-command (CWC) instruction 
is encoded with the number of instructions to transfer (n) 
and the destination subblock (FC_AG, FC_NPSEQ, MM). 
Execution of the CWC instruction results in n subsequent en-
tries in the FC_CMD_Q FIFO buffer being sent to the spec-
ified subblock. The CWC instruction is used to transfer task 
parameters to the MM and FC_AG and to populate the NP se-
quence table (FC_NPSEQ). The NP sequence table is stored 
in 1024 × 32-bit memory containing 32-bit NP commands.

The NPSEQ instruction transfers the NP commands  
stored in FC_NPSEQ to the SA via the DC module. Encoded 
in the instruction are the start address, the end address, and 
the number of iterations. Entries within the range of the start 
and end addresses in FC_NPSEQ are sent to the DC for the 
number of iterations encoded in the instruction. NPSEQ 
transfers can be interrupted by stalls from events such as 
DC buffer memory bank conflict, in which case transfers are 
paused until the stall is resolved.

The PROBE instruction enables the host to check the cur-
rent status of other modules in the STC accelerator. Status 
information is used to control the STC execution flow and is 
conveyed via flags that signify operation start, operation end, 
and operation in progress.

F I G U R E  2   STC block diagram [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  3   STC flow controller block diagram [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2.1  |  Address generator

The address generator (AG) is a submodule of the FC that 
generates the sequential DC buffer memory addresses of the 
input, output, and weight data for the dataflow between the 
SA and the DC.

Memory address information is sent to the DC synchro-
nized with the issuing of the corresponding NP commands 
(NPSEQ). Addresses are generated with logic circuitry based 
on a programmable n-dimension nested loop, with parameters 
to match the input, output, and weight data. For the example 
convolutional layer in Figure  4, the pseudocode for the sev-
en-dimensional nested loop for input dataflow control is shown 
in Figure 5. Each loop represents the iterations of the following:

•	 I loop: weight/input data channel direction
•	 J loop: weight data width direction
•	 K loop: weight data height direction
•	 L loop: input data pooling width direction
•	 M loop: input data pooling height direction
•	 N loop: input data sliding window width direction
•	 O loop: input data sliding window height direction

Among other parameters, the initial values for the number 
of iterations for the seven loops (*_LOOP), seven offset val-
ues (*_INC), and start address (*ADDR) are configured by 
FC control. In this example, I_LOOP and I_INC in Figure 5 
correspond to “Ci” and “Wi × Hi” in Figure 4, respectively. 

After the initial address, subsequent addresses are sequen-
tially calculated during run-time.

The programmability of the loop dimensions of the AG 
design enables its functionality to be applicable to various 
NNs, while performance is maximized with the optimal 
loop parameters that are determined during compile time.

Compared to methods that require data manipulation (re-
ordering or redundant data in memory) for “im2col”-like 
functionality, this AG design conserves memory usage, 
bandwidth, and manipulation overhead by generating syn-
chronized addresses based on the parameters to retrieve and 
store data in the DC buffers when necessary.

2.3  |  Memory mover

The MM modules are DMA blocks that interface data trans-
fer between the STC internal memory (DC buffer) and the 
external bus. The STC consists of five MMs. In the stan-
dalone mode, MM0 and MM1 are used to transfer the input 
image data and kernel data into DC buffers, while MM3 is 
used to output the resulting data from the STC to the external 
interfaces. In the server mode, MM4 is used as an AXI slave 
port for the PCIe interface.

2.4  |  Data controller

The DC module has the following three main functions:

1.	 Manage input operand, weight values, and output data 
in the DC buffers.

T A B L E  2   FC instructions

Type Description

CWC (Consecutive-Write-
Command)

Transfer multiple units of control 
data to FC subblock or MM

NPSEQ Send NP commands to SA

PROBE Probe status of subblock

WAIT_N Wait N clock cycles

TERM Terminate into idle state

F I G U R E  4   Input, weight, output data loop parameters of a 
convolutional layer [Colour figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  5   Pseudocode of the address generator with the seven-
dimensional nested loop. (Pooling and sliding window parameters not 
shown.)
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2.	 Satisfy MM data requests to read/write to/from the DC 
buffer.

3.	 Manage the data flow to and from the SA according to the 
parameters and control signals from the FC.

Figure 6 shows the DC and SA for the first five rows. Each 
row of the SA is allotted with a DC buffer of 256 kB di-
vided into eight banks for a total of 32 MB for all 128 rows. 
Different DC buffer banks can be simultaneously accessed. 
Three systolic register chains (eight stages, 16 rows per stage) 
transfer requests and data between the DC buffers and the 
MM modules. Parameters and control signals from the FC 
are propagated row-by-row in systolic fashion. Information 
received from the FC includes control and configuration in-
formation for the DC, feature map/weight addresses for input 
to the SA, output data addresses to save data from the SA, 
NP commands to be issued to the SA, and so on. Data can 
be rerouted to/from the DC buffers of the neighboring rows 
when necessary.

The DC module also includes an activation unit (AU) 
in each row for the computation of nonlinear activation 
functions using a 2 kB configurable look-up table (LUT). 
Output data from the SA can either bypass or be fed into 
the AU.

2.5  |  Systolic array

The SA consists of 128 × 128 (NP) elements, each of which 
is connected to NP elements to propagate feature map/weight 

data, output data, and carry out NP commands in a systolic 
fashion. Feature map data and NP commands are propagated 
from left to right, weight data are propagated from top to 
bottom, and output data are propagated from right to left. 
The feature map data are fed into the array via the left-most 
column, and the weight kernels are fed fed into the NP ele-
ments of the first row from the top. The output data exit via 
the NP elements in the left-most column and are transmitted 
to the DC.

2.6  |  Neural processing element

Most SA architectures in other systems use processing ele-
ments that are only capable of MAC computations. The NP 
in AB9 is more sophisticated and highly configurable, allow-
ing much more than just MAC operations within the process-
ing element of the SA (additional registers for intermediate 
value storage, maximum value detection, pooling, compari-
son, ReLUs, and so on). This allows for almost all computa-
tions (except nonlinear activations that occur in the AU) that 
take place in a layer to be executed within the NP without 
additional iterations.

The NP elements that populate the SA are highly 
configurable cores that can be programmed to perform 
a variety of operations. NP behavior is dictated by the 
NP commands that are fed into the SA from the DC and 
propagated left to right to a neighboring NP element, as 
shown in Figure 7. Input feature operands travel through 
NP elements left to right (A operand in Figure 7), while 

F I G U R E  6   STC block diagram showing the DC and NPs for the first five rows [Colour figure can be viewed at wileyonlinelibrary.com]
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weight operands travel top to bottom (B operands). 
Output data are relayed to the DC module from right 
to left (Z signal in Figure  7). Operands and the corre-
sponding control signals are synchronized. Each NP in-
cludes one half-precision floating-point adder and one 
multiplier in two pipelined stages. Signals propagate to 
neighboring NP elements in one cycle. Feedback routes 
enable the use of data in the Z registers as the operand 
inputs of the multiplier and adder. Structural hazards that 
may occur when using the feedback routes are taken into 
account when generating NP commands during compile 
time. The NP design is highly programmable, where the 
control information encoded in the NP commands for 
the nine NP multiplexors enables flexible control of the 
datapath to execute computations for a variety of NN 
layer types.

Figure 8 shows how the NP elements can be configured to 
operate for a MAC operation. Active signals are color-coded 
by the pipeline stage at which they are active, while inac-
tive signals are faded gray. The control settings encoded in 
the NP command in cntrl_r0 determine the active signals 

shown in red by setting the red multiplexor select signals 
(mul_a_sel, mul_b_sel, P_reg_in_sel). In this case, input 
operands A and B from neighboring NP elements (as op-
posed to data saved in the Z registers Z0_reg, Z1_reg) are 
fed into the multiplier, and the resulting product is stored 
in the P register (P_reg). Similarly, the NP command in 
cntrl_r1 configures the green multiplexor select signals 
to accumulate the product in P_reg to the value in Z0_reg 
and store the results back in Z0_reg. Output values (Z_out) 
can be configured to be from registers Z0_reg and Z1_reg 
or from Z_in_reg, which holds the values relayed from the 
neighboring NP element to the right.

3  |   DEVELOPMENT 
ENVIRONMENT

The application development environment is designed to be 
intuitive and efficient for nonexpert users. The development 
environment includes STC-C and STC-SE, as shown in the 
tool flow presented in Figure 9.

F I G U R E  7   NP block diagram [Colour figure can be viewed at wileyonlinelibrary.com]
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3.1  |  STC compiler

The main function of STC-C is to generate the commands 
that drive the STC accelerator in order to provide maximum 
performance for the target application. The three main func-
tional steps of STC-C are shown in color in Figure 10 and 
consist of (a) parsing configurations (blue), (b) a scheme for 
the selection of optimal parameters and scheduling (yellow), 
and (c) command generation (green).

In the first step, STC-C parses three configuration files, as 
shown in Figure 9: a neural net description file (.stcnn,.pro-
totxt, ONNX, and so on), a file with hardware structure infor-
mation (.stchw), and a compile option file (.stccc). The second 
step involves the selection of the optimal scheduling schemes 
and parameters based on the parsed configuration by compar-
ing the STC performance under configurations with variations 
in the operational parameters that include tiling, memory allo-
cation, batch size, and hardware operation scheduling.

Tiling of the weight data is based on the number of 
weights processed in parallel in the SA columns. The input 
and output data tiling decisions are based on the required 
and available DC buffer memory for the storage of the input, 
output, and weight data and the batch size. The memory al-
location algorithm assigns the input, output, and weight data 
to the specific banks in the DC buffer on the basis of the 
data size and bandwidth parameters. The tiling and memory 

allocation algorithms ultimately produce parameters that 
optimize the bandwidth and memory utilization. The hard-
ware operation scheduling algorithm determines the optimal 
scheme by maximizing the number of parallel computations 
and concurrently accessible DC buffer banks. The algorithms 
are optimized on the basis of the three operation parameters 
but are cohesively streamlined into STC-C because each 
parameter can influence the other two parameters. Further 
optimizations such as subsequent layer prefetching during 
the SA operation of a current layer using a double buffering 
scheme, multichip execution, and data reuse between layers 
to minimize memory access are performed by STC-C.

STC command sequences by the layer are generated in the 
final step on the basis of the optimal parameters determined 
in the second step, producing three output files: a command 
sequence file (cmd.h), user-defined file (user.h), and main 
function file (reference_top.c). The command sequence file in-
cludes STC commands by layer in the one-dimensional (1D) 
array format. The user-defined file lists variables defined by the 
application, such as the external memory address of data. The 
main function file guides the main code to call the command 
sequence file for the application user and will be described in 
Section 4.

The order and period of data fetching and computations 
are produced by STC-C during compilation and hence 
are deterministic. STC-C is therefore able to produce 

F I G U R E  8   NP operation example [Colour figure can be viewed at wileyonlinelibrary.com]
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commands that control the power gating circuitry, reduc-
ing power consumption by powering off sections of the SA 
when idle. The time required for power gating toggling to 
actually take effect is considered (owing to the cell/wire 

delay of the header cells). Power gating is switched off in 
advance to eliminate any delay resulting from the power 
gating scheme. If the SA idle time between two active pe-
riods is less than the time for the power gating circuit to 

F I G U R E  9   AB9 SDK tool flow [Colour figure can be viewed at wileyonlinelibrary.com]
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switch on and off, power is maintained to avoid perfor-
mance loss.

3.2  |  STC-SE

STC-SE is used to analyze the performance of the STC ac-
celerator for a specific NN and to verify the command files 
generated by STC-C. All of the key components are mod-
eled, including the DDR4 memory, Aldebaran core, PCIe 
interface, and the network-on-chip (NoC).

STC-SE was developed to enable accurate cycle-level 
simulation for the STC and transaction-level verification for 
the data exchange between DDR memory and on-chip mem-
ory. For verification, the weight and input data are loaded 
into memory, the STC model is run for each layer, and the 
generated result is compared to the reference output data.

STC-SE is implemented in the form of a library and can 
be executed by compiling with command files generated by 

STC-C and C code for model generation to generate and run 
an executable file. It was designed to maximize the utiliza-
tion of the processor resources of the system running STC-SE 
by running the host central processing unit (CPU), AB9, and 
STC models simultaneously via multithreading functions.

4  |   CASE STUDY: YOLOv2

This section describes the development of an application 
using YOLOv2 [5] as an example.

4.1  |  AB9 bare-metal application 
implementation: YOLOv2

YOLOv2 for a 416 × 416 image was implemented in a bare-
metal environment. The original YOLOv2 program was con-
verted into a bare-metal version. The network configuration 

T A B L E  3   STC-C results for YOLOv2

Layer # Layer Type
Data 
Tiling

Weight 
Tiling

Memory allocation (subblock #)
Input
load

Output 
storeWeight 0 Weight 1 Input Output

0,1 Conv + Pool 2 1 0 2–3 4–7 √ √

2,3 Conv + Pool 2 1 1 4–7 2–3 √ √

4 Conv 2 1 0 2–3 4–7 √ √

5 Conv 2 1 1 4–7 2–3 √ √

6, 7 Conv + Pool 1 1 0 2–5 6–7 √

8 Conv 1 2 1 6–7 2–5

9 Conv 1 1 1 0 2–5 6–7

10, 11 Conv + Pool 1 2 0 6–7 2–5

12 Conv 1 4 0 1 2 6–7

13 Conv 1 2 0 1 6–7 2

14 Conv 1 4 0 1 2 6–7

15 Conv 1 2 0 1 6–7 2

16 Conv 1 4 0 1 2 6–7 √ √

17 Pool 1 6–7 2 √

18 Conv 1 8 0 1 2 6–7 √

19 Conv 1 4 0 1 6–7 2

20 Conv 1 8 0 1 2 6–7

21 Conv 1 4 0 1 6–7 2

22 Conv 1 8 0 1 2 6–7

23 Conv 1 8 0 1 6–7 2–3

24 Conv 1 8 0 1 2–3 6–7 √

26 Conv 1 1 0 2–5 7 √ √

29 Conv 1 8 1 0 2–4 6–7 √

30 Conv 1 4 1 0 6–7 2 √
aColor shading shows when input load and output store are skipped because output data of one layer is used as the input of a subsequent layer. 
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files were converted to static linked lists to enable the use of 
the original parsing code. The operand data were converted 
to 16-bit half-precision floating-point.

The convolutional and pooling layers are handled 
by the STC hardware while the routing layers are ex-
ecuted by setting the output of a previous layer as the 
input to the consuming layer (eg, layers 27 and 24 to layer 
28). The reorg layer is executed by software running on  
the Aldebaran core. Aldebaran core 0 issues the address 
of the layer commands to the FC and waits until layer 
processing is carried out before proceeding to the next layer.

4.2  |  STC acceleration of YOLOv2

STC-C generates commands to control the MM, FC, AG, and 
NP elements. The data header file for the commands should be 
defined in the actual application software using a #define state-
ment. The commands are in stccc_cmd.h. User-configured 
#define statements must be provided in the stccc_user.h file 
and included in the stccc_cmd.h file. The weight and layer out-
put buffer locations are set by the user, while the network input 
buffers locations are determined by the compiler and linker.

The network_run() function invokes forward processing 
and contains a for loop, where the layer processing function 
“all_layer_top” is called layer-by-layer. Some software layers 
are separately called in this loop. The all_layer_top function 
receives the layer number, which is used to pass a pointer to 
the command data and the length of the commands for the 
layer to the STC hardware. Prior to calling the layer process-
ing to the hardware, the software resets a flag indicating layer 
completion, and the interrupt service routine later sets the flag 
so that the software can proceed to process the next layer.

4.3  |  STC-C decision result for YOLO2

Table 3 presents the tiling, memory allocation, and data reuse 
results from STC-C for YOLOv2 with a batch size of 8 and a 

batch height of 16. DC bank numbers (eight banks available per 
row) are separately allocated for the input, output, and weight 
data and are listed in the memory allocation column. Weight 
has two columns because the weight data are prefetched by a 
double buffering scheme expediting data fetching and reduc-
ing the SA idle time. The input/output data for layers 0–5 are 
tiled owing to their large size. Interlayer data are reused as 
much as possible to minimize the run-time by reducing the 
movement of the data in and out of external memory. For the 
last two columns, the cells are shaded in blue when input data 
loading is skipped because the output data from the previous 
layer are reused as input data for the current layer, while the 
cells are shaded in yellow when output data storing is skipped 
as the output data are reused as input data in the next layer.

5  |   RESULTS

To evaluate the performance of the AB9 SoC, we com-
pare its performance with that of other hardware accel-
eration platforms found in the literature. Two well-known 
networks were chosen for measurement. Table 4 lists the 
specifications of AB9. Table  5 shows the performance 
when running VGG-19 [6], while Table 6 shows the per-
formance for YOLOv2 [5] with the standard 416  ×  416 
image size.

T A B L E  4   AB9 SoC specifications

Performance 40 TFLOPS,

Power 15 W–40 W

Die area 17 mm × 23 mm, 391 mm2

Transistor count ~1 billion

Process technology TSMC 28 nm

Frequency 1 GHz

Arithmetic units 32 768

On-chip memory >36 MB

Number representation 16-bit floating-point

T A B L E  5   VGG-19 comparison

fps Image Size Type Source

AB9 STC 74 256 × 256 SoC

Hisilicon Kirin 990 5G 32.5 256 × 256 SoC [7,8]

Snapdragon 855 Plus 5.5 256 × 256 SoC [7,8]

NVIDIA GTX 1080Ti 20.8 224 × 224 GPU [9]

Intel Dual Xeon E5-2630 0.277 224 × 224 CPU [9]

NVIDIA Titan RTX 12.2 256 × 256 GPU [7,8]

NVIDIA Tesla V100 16.4 256 × 256 GPU [7,8]

NVIDIA Titan X Pascal 9.26 256 × 256 GPU [7,8]

Edge TPU 3.25 256 × 256 SoC [10]

T A B L E  6   YOLOv2 comparison

fps Type Source

AB9 STC 100 SoC

Movidius 3 SoC [11]

NVIDIA Pascal Titan X 67 GPU [5]

NVIDIA Jetson TX2 7 GPU [5]

NVIDIA Xavier AGX 30 GPU [12]

NVIDIA GTX1080 28 GPU [12]

Xilinx FPGA with DPU 25 FPGA [12]
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From the results, we observe that the AB9 SoC exhibits a 
higher fps than the other surveyed hardware. The advantage 
in performance can be attributed to the hardware optimi-
zations customized for NN computations. This starts from 
the robust flexibility and functionality of the custom pro-
cessing elements (NP) to the systolic architecture for data 
reuse with address generation hardware that eliminates data 
manipulation overhead, as well as the NN compilation envi-
ronment that provides the optimal configurations based on 
NN parameters.

Table 7 lists the distribution of the STC execution time for 
each YOLOv2 layer as well as the relative time that the SA 
was active for that layer. We can observe that the SA is utilized 
more often with batch parallelism during the later layers where 
feature map size is reduced and the filter quantity is large. The 
SA is active for about 52% of the total execution time.

A comparison of the power efficiency is rather difficult, 
as comparable measurements are difficult to find and several 
variables undermine evaluation on equal grounds. For the sake 

of argument, public data on GPGPUs allow us to make as-
sumptions and estimates of power efficiency. The GPU power 
can reach upward of 200 W depending on the workload. The 
NVIDIA Pascal Titan X GPU is documented to consume 
75 W when idle [13]. Using this as an optimistic assumption 
with YOLOv2 at 67 fps, it consumes 1.117 J/frame, while the 
AB9 SoC consumes 0.15–0.4 J/frame. The power efficiency 
of the AB9 SoC can be attributed to the custom design for 
NN acceleration, as opposed to the generality that the GPGPU 
maintains for other applications.

Figure  11 shows the layout of the AB9 SoC, while 
Figure 12 shows pictures of the actual SoC.

6  |   CONCLUSION

We have introduced the AB9 neural processor SoC that fea-
tures an STC NN accelerator for inference. Complementing 
the hardware is a concise and effective development 

T A B L E  7   AB9 execution time distribution for YOLOv2

Layer % Time
SA 
Active Filters Size Input Output Type

0, 1 4.31% 23.48% 32 3 × 3 416 × 416 × 3 208 × 208 × 32 Conv + maxpool

2, 3 4.59% 35.10% 64 3 × 3 208 × 208 × 32 104 × 104 × 64 Conv + maxpool

4 6.70% 26.04% 128 3 × 3 104 × 104 × 64 104 × 104 × 128 Conv

5 3.71% 8.82% 64 1 × 1 104 × 104 × 128 104 × 104 × 64 Conv

6, 7 3.13% 55.11% 128 3 × 3 104 × 104 × 64 52 × 52 × 128 Conv + maxpool

8 4.12% 43.76% 256 3 × 3 52 × 52 × 128 52 × 52 × 256 Conv

9 1.86% 17.65% 128 1 × 1 52 × 52 × 256 52 × 52 × 128 Conv

10, 11 2.69% 61.91% 256 3 × 3 52 × 52 × 128 26 × 26 × 256 Conv + maxpool

12 3.40% 49.74% 512 3 × 3 26 × 26 × 256 26 × 26 × 512 Conv

13 1.80% 35.48% 256 1 × 1 26 × 26 × 512 26 × 26 × 256 Conv

14 3.40% 49.80% 512 3 × 3 26 × 26 × 256 26 × 26 × 512 Conv

15 1.82% 35.10% 256 1 × 1 26 × 26 × 512 26 × 26 × 256 Conv

16 3.39% 49.83% 512 3 × 3 26 × 26 × 256 26 × 26 × 512 Conv

17 1.21% 13.49% 26 × 26 × 512 13 × 13 × 512 Maxpool

18 5.90% 55.66% 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024 Conv

19 1.78% 71.89% 512 1 × 1 13 × 13 × 1024 13 × 13 × 512 Conv

20 5.90% 55.70% 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024 Conv

21 1.78% 71.89% 512 1 × 1 13 × 13 × 1024 13 × 13 × 512 Conv

22 5.89% 55.69% 1024 3 × 3 13 × 13 × 512 13 × 13 × 1024 Conv

23 9.45% 69.01% 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024 Conv

24 9.44% 69.11% 1024 3 × 3 13 × 13 × 1024 13 × 13 × 1024 Conv

25 - - 26 × 26 × 512 Route

26 0.87% 18.87% 64 1 × 1 26 × 26 × 512 13 × 13 × 2048 Reorg

27 - - 13 × 13 × 3072 Route

28 11.23% 72.51% 1024 3 × 3 13 × 13 × 3072 13 × 13 × 1024 Conv

29 1.63% 69.12% 425 1 × 1 13 × 13 × 1024 13 × 13 × 425 Conv
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environment that includes a compiler and simulator engine. 
With a custom design targeting NN acceleration, the STC 
accelerator and its development environment are optimized 
to enhance performance and efficiency while maintaining 
programmability to accommodate various NN types. The 
AB9 SoC uses TSMC 28-nm process technology with a 
chip area of 17 × 23 mm2.
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