Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.4.669

ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS  

Shaikh, Absos Ali (Department of Mathematics University of Burdwan)
Kim, Young-Ho (Department of Mathematics Kyungpook National University)
Hui, Shyamal Kumar (Department of Mathematics University of Burdwan)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.4, 2011 , pp. 669-689 More about this Journal
Abstract
The notion of quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasi-umbilical hypersurfaces. For instance, the Robertson-Walker spacetimes are quasi-Einstein manifolds. The object of the present paper is to study Lorentzian quasi-Einstein manifolds. Some basic geometric properties of such a manifold are obtained. The applications of Lorentzian quasi-Einstein manifolds to the general relativity and cosmology are investigated. Theories of gravitational collapse and models of Supernova explosions [5] are based on a relativistic fluid model for the star. In the theories of galaxy formation, relativistic fluid models have been used in order to describe the evolution of perturbations of the baryon and radiation components of the cosmic medium [32]. Theories of the structure and stability of neutron stars assume that the medium can be treated as a relativistic perfectly conducting magneto fluid. Theories of relativistic stars (which would be models for supermassive stars) are also based on relativistic fluid models. The problem of accretion onto a neutron star or a black hole is usually set in the framework of relativistic fluid models. Among others it is shown that a quasi-Einstein spacetime represents perfect fluid spacetime model in cosmology and consequently such a spacetime determines the final phase in the evolution of the universe. Finally the existence of such manifolds is ensured by several examples constructed from various well known geometric structures.
Keywords
quasi-Einstein manifold; Lorentzian manifold; Lorentzian quasi Einstein manifold; Lorentzian quasi-constant curvature; conformally flat; scalar curvature; Codazzi tensor; perfect fluid spacetime; viscous fluid spacetime; heat flux; concircular structure spacetime;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. 29 (1977), no. 1, 91-113.   DOI
2 I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical analysis (Kaz- imierz Dolny, 1991), 155-169, World Sci. Publ., River Edge, NJ, 1992.
3 I. Mihai, A. A. Shaikh, and U. C. De, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999), 1-13.   DOI
4 M. Novello and M. J. Reboucas, The stability of a rotating universe, The Astrophysics J. 225 (1978), 719-724.   DOI
5 B. O'Neill, Semi Riemannian Geometry with Applications to Relativity, Academic Press, Inc., 1983.
6 P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton Univ. Press, 1980.
7 J. A. Schouten, Ricci Calculus, (2nd Ed.), Springer-Verlag, Berlin, 1954.
8 A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the con- circular type, Kyungpook Math. J. 43 (2003), no. 2, 305-314.
9 A. A. Shaikh, T. Basu, and K. K. Baishya, On the existence of locally $\phi$-recurrent LP-Sasakian manifold, Bull. Allahabad Math. Soc. 24 (2009), no. 2, 281-295.
10 A. A. Shaikh and K. K. Baishya, On $\phi$-symmetric LP-Sasakian manifolds, Yokohama Math. J. 52 (2006), no. 2, 97-112.
11 A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sc. Math. Roumanie Tome, 49(97) (2006), no. 2, 193-205.
12 A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1 (2005), no. 2, 129-132.   DOI
13 A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes II, Amer. J. Appl. Sci. 3 (2006), 1790-1794.   DOI   ScienceOn
14 M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish and Perish, Vol. I, 1970.
15 R. Deszcz, L. Verstraelen, and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), no. 2, 167-179.
16 R. Deszcz and M. Hotlos, On some pseudosymmetry type curvature condition, Tsukuba J. Math. 27 (2003), no. 1, 13-30.   DOI
17 M. Glogowska, Semi-Riemannian manifolds whose weyl tensor is a Kulkarni-Nomizu square, Publ. Inst. Math. (Beograd), Tome 72 (2002), no. 86, 95-106.   DOI
18 R. Deszcz and M. Hotlos, On hypersurfaces with type number two in space forms, Ann. Univ. Sci. Bu- dapest. Eotvos Sect. Math. 46 (2003), 19-34.
19 R. Deszcz and M. Glogowska, Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. Math. 94 (2002), no. 1, 87-101.   DOI
20 D. Ferus, A Remark on Codazzi Tensors on Constant Curvature Space, Lecture Notes Math. 838, Global Differential Geometry and Global Analysis, Springer-Verlag, New York, 1981.
21 M. Glogowska, On quasi-Einstein Cartan type hypersurfaces, J. Geom. Phys. 58 (2008), no. 5, 599-614.   DOI   ScienceOn
22 F. Gouli-Andreou and E. Moutaf, Two classes of pseudosymmetric contact metric 3- manifolds, Pacifc J. Math. 239 (2009), no. 1, 17-37.   DOI
23 T. Ikawa and M. Erdogan, Sasakian manifolds with Lorentzian metric, Kyungpook Math. J. 35 (1996), no. 3, 517-526.
24 H. Karchar, Infnitesimal characterization of Friedmann Universe, Arch. Math. Basel 38 (1992), 58-64.
25 K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
26 K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor N. S. 47 (1988), no. 2, 189-197.
27 U. C. De, K. Matsumoto, and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, al n. 3 (1999), 149-158.
28 R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A 44 (1992), no. 1, 1-34.
29 F. Defever, R. Deszcz, M. Hotlos, M. Kucharski, and Z. Senturk, Generalisations of Robertson-Walker spaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math. 43 (2000), 13-24.
30 J. Deprez, W. Roter, and L. Verstraelen, Conditions on the projective curvature tensor of conformally at Riemannian manifolds, Kyungpook Math. J. 29 (1989), no. 2, 153- 165.
31 R. Deszcz, F. Dillen, L. Verstraelen, and L. Vrancken, Quasi-Einstein totally real sub- manifolds of the nearly Kahler 66-sphere, Tohoku Math. J. (2) 51 (1999), no. 4, 461-478.   DOI
32 R. Deszcz, M. Glogowska, M. Hotlos, and Z. Senturk, On certain quasi-Einstein semi- symmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math. 41 (1998), 151-164.
33 R. Deszcz, M. Hotlos, and Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemann- ian space forms, Colloq. Math. 81 (2001), no. 1, 81-97.
34 R. Deszcz, M. Hotlos, and Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemann- ian space forms, Colloq. Math. 81 (2001), no. 1, 81-97.
35 R. Deszcz, M. Hotlos, and Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math. 27 (2001), no. 4, 375-389.
36 R. Deszcz, P. Verheyen, and L. Verstraelen, On some generalized Einstein metric con- ditions,Publ. Inst. Math. (Beograd) (N.S.) 60(74) (1996), 108-120.
37 R. Deszcz, L. Verstraelen, and S. Yaprak, Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math. 22 (1994), no. 2, 139-157.
38 J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, 1981.
39 P. Amendt and H. Weitzner, Relativistically covariant warm charged uid beam modeling, The Physics of Fluids 28 (1985), 949-957.   DOI
40 D. E. Blair, T. Koufogiorgos, and R. Sharma, A classifcation of 3-dimensional contact metric manifolds with Q$\phi$ = $\phi$Q, Kodai Math. J. 13 (1990), no. 3, 391-401.   DOI
41 B. Y. Chen and K. Yano, Hypersurfaces of a conformally at space, Tensor (N.S.) 26 (1972), 318-322.
42 R. A. Chevalier, Hydrodynamic models of supernova explosions, Fundamentals of Cosmic Physics 7 (1981), 1-58.