• Title/Summary/Keyword: General base catalyst

Search Result 10, Processing Time 0.027 seconds

명장(明將) 남방위(藍芳威)의 조선 활동과 현존 문물 고찰

  • Park, Hyeon-Gyu
    • 중국학논총
    • /
    • no.72
    • /
    • pp.47-70
    • /
    • 2021
  • In this paper, the focus was on the review of Ming General Nan Fangwei's activities during the Choson period and existing relevant historical artifacts & literacy works. Nan Fangwei's hometown was Jiangxi(江西) Changjiang(昌江; Jingdezhen景德鎭). Unfortunately, it has not been known where his descendants migrated later. During Jingdezhen Riot(景德鎭民亂), he went to serve as the head of the grass roots. After surrendering, he became a general in the Ming military base. During Jeongyujae War(丁酉再亂), he entered Chosun as a Youji general(遊擊) and participated in dozens of large and small battles. However, the defeat of Jungro-gun (中路軍) led him to a feud with the Ming's military authorities and to return him, which gave him a hard time to be forcibly dislodged to a remote region. Nan Fangwei established Namwon Guanwang Shrine(南原 關王廟). Since then, it has been preserved in Namwon Wangjeong-dong(王亭洞) through several reconstruction and reconstruction works. In addition, he took good care of people by strictly cracking down on their subordinates with high integrity and virtuous deeds at the military base. Being deeply touched by his morality and virtue, the people of Gongju(公州) established 'Youji general Nan Fangwei Jongdeokbi(〈遊擊將藍公種德碑〉)'. In addition, when he had his leisure time, he collected Korean Chinese poems from various figures and edited and published 'Chosun Poetry Collection(《朝鮮詩選全集》)', which he played a catalyst to promote high-quality Korean poems to Chinese literacy community.

Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion

  • Zhang, Yunlei;Jin, Pei;Meng, Minjia;Gao, Lin;Liu, Meng;Yan, Yongsheng
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850132.1-1850132.14
    • /
    • 2018
  • The direct synthesis of metal-organic frameworks (MOFs) with acidic and basic active sites is challenging due to the introduction of functional groups by post-functionalization method often jeopardize the framework integrity. Herein, we report the direct synthesis of acid-base bifunctional MOFs with tuning acid-base strength. Employing modulated hydrothermal (MHT) approach, microporous MOFs named $UiO-66-NH_2$ was prepared. Through the ring-opening reaction of 1,3-propanesultone with amino group, $UiO-66-NH_2-SO_3H-type$ catalysts can be obtained. The synthesized catalysts were well characterized and their catalytic performances were evaluated in one-pot glucose to 5-HMF conversion. Results revealed the acid-base bi-functional catalyst possessed high activity and excellent stability. This work provides a general and economically viable approach for the large-scale synthesis of acid-base bi-functional MOFs for their potential use in catalysis field.

Correlation of the Rates of Solvolyses of Cinnamyl Bromide

  • Koo, In-Sun;Cho, Jun-Mi;An, Sun-Kyoung;Yang, Ki-Yull;Lee, Jong-Pal;Lee, I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.431-436
    • /
    • 2003
  • Solvolytic rate constants at 25℃ are reported for solvolyses of cinnamyl bromide (1) in binary mixtures of water with acetone, ethanol, methanol, methanol-d, and 2,2,2-trifluoroethanol. Product selectivities are reported for solvolyses of 1 in aqueous ethanol and methanol. Rate ratios in solvents of the same $Y_{Br}$ value and different nucleophilicity provide measures of the minimum extent of nucleophilic solvent assistance (e.g. $[k_{40EW}/k_{97TFE}]$Y = 2.88, EW = ethanol-water). With use of the extended Grunwald-Winstein equation, the l and m values are similar to the values of 0.43 and 0.88 obtained for the solvolyses of 1 using the equation (see below) which includes a parameter (I) for solvation of aromatic rings. The magnitude of l and m values associated with a change of solvent composition predicts the $S_{N1}$ reaction mechanism rather than an $S_{N2}$ channel. Product selectivities (S), defined by S = [ether product]/[alcohol product]×[water]/[alcohol solvent] are related to four rate constants for reactions involving one molecule of solvent as nucleophile and another molecule of solvent as general base catalyst. A linear relationship between 1/S and molar ratio of solvent is derived theoretically and validated experimentally for solvolyses of the above substrates from water up 75% 1/S = $(k_{wa}/k_{aw})$([alcohol solvent]/[water]) + $k_{ww}/k_{aw}$ alcohol-water. The results are best explained by product formation from a “free” carbocation intermediate rather than from a solvent-separated ion pair.

Kinetics and Optimization of Dimethyl Carbonate Synthesis by Transesterification using Design of Experiment

  • Lee, Kilwoo;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.416-420
    • /
    • 2018
  • A comprehensive kinetic study has been conducted on dimethyl carbonate synthesis by transesterification reaction of ethylene carbonate with methanol. An alkali base metal (KOH) was used as catalyst in the synthesis of DMC, and its catalytic ability was investigated in terms of kinetics. The experiment was performed in a batch reactor at atmospheric pressure. The reaction orders, the activation energy and the rate constants were determined for both forward and backward reactions. The reaction order for forward and backward reactions was 0.87 and 2.15, and the activation energy was 12.73 and 29.28 kJ/mol, respectively. Using the general factor analysis in the design of experiments, we analyzed the main effects and interactions according to the MeOH/EC, reaction temperature and KOH concentration. DMC yield with various reaction conditions was presented for all ranges using surface and contour plot. Furthermore, the optimal conditions for DMC yield were determined using response surface method.

An Immobilized Fenton Catalyst$^1$

  • Song, Pill-Soon;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.113-114
    • /
    • 1980
  • Lumichrome (7,8-dimethylalloxazine) exhibits two fluorescence emission maxima at 440 and 540 nm in pyridine-dioxane. These emission band maxima are attributable to radiative decays from the excited states of lumichrome and its flavin tautomer, 7,8-dimethylisoalloxazine, respectively. The growth of the latter can be followed upon excitation of the former with a 2-nanosecond light pulse generated from the nitrogen plasma discharge lamp. The excited state tautomerism results from proton transfer from N-1 to N-10 position during the lifetime of the lumichrome singlet excited state. The rate depends on the concentration of general base, pyridine, and it is an order of magnitude slower than diffusion-controlled processes.

The Grunwald-Winstein Relationship in the Solvolysis of β-Substituted Chloroformate Ester Derivatives: The Solvolysis of 2-Phenylethyl and 2,2-Diphenylethyl Chloroformates

  • Park, Kyoung-Ho;Yang, Gi-Hoon;Kyong, Jin Burm
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2263-2270
    • /
    • 2014
  • Solvolysis rate constants of 2-phenylethyl-(2-$PhCH_2CH_2OCOCl$, 1) and 2,2-diphenylethyl chloroformate (2,2-$Ph_2CHCH_2OCOCl$, 2), together with the previously studied solvolyses of ${\alpha}$- and ${\beta}$-substituted chloroformate ester derivatives, are reported in pure and binary solvents at $40.0^{\circ}C$. The linear free energy relationship (LFER) and sensitivities (l and m) to changes in solvent nucleophilicity ($N_T$) and solvent ionizing power ($Y_{Cl}$) of the solvolytic reactions are analyzed using the Grunwald-Winstein equation. The kinetic solvent isotope effects (KSIEs) in methanol and activation parameter values in various solvents are investigated for 1 and 2. These results support well the bimolecular pathway with same aspects. Furthermore, the small negative values of the entropies of activation of solvolysis of 1 and 2 in the highly ionizing aqueous fluoroalcohols are consistent with the ionization character of the rate-determining step, and the KSIE values of 1.78 and 2.10 in methanol-d indicate that one molecule of solvent acts as a nucleophile and the other acts as a general-base catalyst. It is found that the ${\beta}$-substituents in alkyl chloroformate are not the important factor to decide the solvolysis reaction pathway.

Photocatalyst characteristic of WO3 thin film with sputtering process (스퍼터링법에 의해 제작된 WO3 박막의 광분해 특성)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.420-424
    • /
    • 2016
  • In this study, we developed photocatalytic technology to address the emerging serious problem of air pollution through indoor air cleaning. A single layer of $WO_3$ was prepared by using the dry process of general RF magnetron sputtering. At a base vacuum of $1.8{\times}10^{-6}$[Torr], the optical and electrical properties of the resulting thin films were examined for use as a transparent electrode as well as a photocatalyst. The single layer of $WO_3$ prepared at an RF power of 100 [W], a pressure of 7 [mTorr] and Ar and $O_2$ gas flow rates of 70 and 2 sccm, respectively, showed uniform and good optical transmittance of over 80% in the visible wavelength range from 380 [nm] to 780 [nm]. The optical catalyst characteristics of the $WO_3$ thin film were examined by investigating the optical absorbance and concentration variance in methylene blue, where the $WO_3$ thin film was immersed in the methylene blue. The catalytic characteristics improved with time. The concentration of methylene blue decreased to 80% after 5 hours, which confirms that the $WO_3$ thin film shows the characteristics of an optical catalyst. Using the reflector of a CCFL (cold cathode fluorescent lamp) and the lens of an LED (lighting emitting diode), it is possible to enhance the air cleaning effect of next-generation light sources.

Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems

  • Ryu, Zoon-Ha;Lim, Gui-Taek;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1293-1302
    • /
    • 2003
  • Rate constants at various temperatures and activation parameters are reported for solvolyses of acyl chlorides (RCOCl), with R = Me, Et, i-Pr, t-Bu, cyclopentylmethyl, benzyl, thiophenylmethyl, 2-phenylethyl, diphenylmethyl, and phenylthiomethyl in 100% ethanol, 100% 2,2,2-trifluoroethanol (TFE), 80% v/v ethanol/ water and 97% w/w TFE/water. Additional rate constants for solvolyses with R = Me, t-Bu, and $PhCH_2$ are reported for TFE/water and TFE/ethanol mixtures, and for solvolyses with R = t-Bu, and PhCH2 are reported for 1,1,1,3,3,3-hexafluoropropan-2-ol/water mixtures, as well as selected kinetic solvent isotope effects (MeOH/MeOD and TFE). Taft plots show that electron withdrawing groups (EWG) decrease reactivity significantly in TFE, but increase reactivity slightly in ethanol. Correlation of solvent effects using the extended Grunwald-Winstein (GW) equation shows an increasing sensitivity to solvent nucleophilicity for EWG. The effect of solvent stoichiometry in assumed third order reactions is evaluated for TFE/ethanol mixtures, which do not fit well in GW plots for R = Me, and t-Bu, and it is proposed that one molecule of TFE may have a specific role as electrophile; in contrast, reactions of substrates containing an EWG can be explained by third order reactions in which one molecule of solvent (ethanol or TFE) acts as a nucleophile, and a molecule of ethanol acts as a general base catalyst. Isokinetic relationships are also investigated.

Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Butane-2,3-dione Monoximate and 4-Chlorophenoxide: Origin of the α-Effect

  • Kim, Min-Young;Min, Se-Won;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • Second-order rate constants have been measured spectrophotometrically for the reactions of phenyl Y-substituted-phenyl carbonates 7a-g with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The ${\alpha}$-nucleophile $Ox^-$ is 53-95 times more reactive than the corresponding normal-nucleophile 4-$ClPhO^-$ toward 7a-g, indicating that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect (e.g., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent Y. The cause of the ${\alpha}$-effect for the reactions of 7a-g has been suggested to be ground-state (GS) effect rather than transition-state (TS) stabilization through a six-membered cyclic TS, in which $Ox^-$ behaves a general acid/base catalyst. This idea is further supported by the result that $OH^-$ exhibits negative deviation from the linear Br${\o}$nsted-type plot composed of a series of aryloxides, while $Ox^-$ deviates positively from the linearity. Differential solvation of the GS of $Ox^-$ and 4-$ClPhO^-$ has been suggested to be responsible for the ${\alpha}$-effect exerted by $Ox^-$.

Effect of chloride ions on the catalytic properties of human pancreatic α-amylase isozyme produced in Pichia pastoris (Pichia pastoris에서 생산된 인체 췌장 α-아밀레이스 동질효소의 촉매활성에 대한 염소이온의 영향)

  • Kim, Min-Gyu;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • The AMY2B gene, encoding human pancreatic ${\alpha}$-amylase isozyme (HPA II), was expressed in Pichia pastoris, and the effects of chloride ions on HPA II activity toward starch substrates were investigated. As seen with chloride ion-dependent ${\alpha}$-amylases-including HPA I, the isozyme of HPA II-chloride ions increased enzyme activity and shifted the optimal pH to an alkaline pH. The activity enhancement by chloride was more significant at pH 8 than that at pH 6, suggesting that the protonation state of the general acid/base catalyst of HPA II was important for the hydrolysis of starches at an alkaline pH because of the increase in its $pK_a$ by chloride ions. The turnover values for cereal starches as the substrates markedly increased in the presence of chloride by up to 7.2-fold, whereas that for soluble starch increased by only 1.7-fold. Chloride inhibited substrate hydrolysis at high substrate concentrations, with $K_i$ values ranging from 6 to 15 mg/mL.