Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. Digital hologram is calculated by modeling the interference phenomenon between an object wave and a reference wave. The modeling for digital holograms is called by computer generated hologram (CGH) Generally, CGH requires a very large amount of calculation. So if holograms are generated in real time, high-speed method should be needed. In this paper, we analyzed CGH equation, optimized it for mapping general purpose graphic processing unit (GPGPU), and proposed a optimized CGH calculation technique for GPGPU by resource allocation and various experiments which include block size changing, memory selection, and hologram tiling. The implemented results showed that a digital hologram that has $1,024{\times}1,024$ resolution can be generated during approximately 24ms, using 1K point clouds. In the experiment, we used two GTX 580 GPGPU of nVidia Inc.
General Purpose Graphic Processing Unit (GPGPU) computing is a technique that utilizes the high-performance many-core processors of high-end graphic cards for general-purpose computations such as 3D graphics, video/image processing, computer vision, scientific computing, HPC and many more. GPGPUs offer a vast amount of raw computing power, but programming is extremely challenging because of hardware idiosyncrasies. The open computing language (OpenCL) has been proposed as a vendor-independent GPGPU programming interface. OpenCL is very close to the hardware and thus does little to increase GPGPU programmability. In this paper we present how a set of digital camera image signal processing (ISP) filters can be realized efficiently on GPGPUs using OpenCL. Although we found ISP filters to be memory-bound computations, our GPGPU implementations achieve speedups of up to a factor of 64.8 over their sequential counterparts. On GPGPUs, our proposed optimizations achieved speedups between 145% and 275% over their baseline GPGPU implementations. Our experiments have been conducted on a Geforce GTX 275; because of OpenCL we expect our optimizations to be applicable to other architectures as well.
컴퓨터를 이용하여 홀로그램을 생성하기 위해서는 방대한 양의 계산이 필요하다. 이를 고속화하기 위해 GPGPU(General Purpose computing on Graphic Process Unit)를 이용하여 병렬 프로그래밍을 통한 고속화 방법들이 많이 연구되었다. 본 논문에서는 홀로그램 화소 기반의 병렬처리에서 생기는 병목현상을 줄이고, 공통항을 이용한 가속화 방법을 제안한다. 또한 최적의 쓰레드를 결정하기 위해 nVidia사의 CUDA와 함께 제공되는 Visual Profiler를 이용한 최적화 방법을 소개한다. 구현 결과 기존 연구 대비 최대 40%의 계산시간을 줄일 수 있었다.
본 논문에서는 디스플레이 장치의 화면을 픽셀 단위로 구성하는 Rasterizer의 가속화를 위하여 SIMT구조의 GPGPU(General Purpose computing on Graphics Processing Units)를 사용하였다. GPU는 많은 수의 ALU를 가지고 있고, 병렬처리하기 때문에 연산처리가 매우 빠르다. 따라서 본 논문에서는 연산을 순차적으로 수행하는 CPU와 연산을 병렬적으로 수행하는 GPU를 이용하여 3D그래픽스 모델을 생성하는 rasterizer를 구현했다. 한 프레임 생성 시 Intel CPU를 이용한 rasterizer보다 본 논문에서 제안하는 rasterizer가 1.45배 좋은 성능을 확인하였다.
최신 GPU는 GPGPU를 활용하여 범용 연산이 가능하다. 뿐만 아니라, GPU는 내장된 다수의 코어를 활용하여 강력한 연산 처리량을 제공한다. AES 알고리즘은 다수의 병렬 연산을 요구하지만 CPU 구조에서는 효율적인 병렬처리가 이뤄지지 않는다. 따라서, 본 논문에서는 강력한 병력 연산 자원을 활용하는 GPGPU 구조에서 AES 알고리즘을 수행함으로써 AES 알고리즘 처리시간을 줄여보았다. 하지만, GPGPU 구조는 AES 알고리즘 같은 암호알고리즘에 최적화되어 있지 않다. 그러므로 AES 알고리즘에 최적화될 수 있도록 재구성 가능한 GPGPU 구조를 제안하고자 한다. 제안된 기법은 SM의 개수를 동적으로 할당하는 IPC 기반 SM 동적 관리 기법이다. IPC 기반 SM 동적 관리 기법은 GPGPU 구조에서 동작하는 AES의 IPC를 실시간으로 반영하여 최적의 SM의 개수를 동적으로 할당한다. 실험 결과에 따르면 제안된 동적 SM 관리 기법은 기존의 GPGPU 구조와 비교하여 하드웨어 자원을 효과적으로 활용하여 성능을 크게 향상시켰다. 일반적인 GPGP 구조와 비교하여, 제안된 기법의 AES의 암호화/복호화는 평균 41.2%의 성능 향상을 보여준다.
최근 GPU 의 뛰어난 부동 소수점 연산 능력을 활용하여 그래픽 이외에 다양한 응용 프로그램들의 병렬화 및 성능최적화가 활발하게 이루어지고 있다. 이러한 GPU 의 성능을 극대화하기 위해서는 메모리 계층구조 및 shared memory 를 비롯한 on-chip 메모리의 사용을 최적화하는 것이 필수적이다. 본 논문에서는 이러한 shared memory 의 사용을 최적화하기 위한 기법들을 제안하고, 이를 패턴 매칭 응용 프로그램에 적용하여 효용성을 검증한다.
GPGPU의 높은 연산 처리 능력을 활용하여 길고 복잡한 계산을 하려는 시도가 많이 있다. GPGPU 프로그램의 특성상 host와 device 사이에 메모리 복사가 필요하다. 해당 메모리 복사 latency가 길 경우 프로그램의 성능에 많은 영향을 준다. 그래서 GPGPU를 활용한 프로그래밍은 최적화에 따른 성능 차이가 크다. 여러 개의 GPGPU 프로그램을 동시에 실행시키면 메모리 복사와 GPGPU 컴퓨팅이 중첩이 되어 메모리 복사 latency hiding 효과를 기대할 수 있다. 이 논문에서는 메모리 복사 latency hiding을 분석한다. 또 메모리 복사의 성능을 높이기 위해 pinned memory를 사용했을 경우의 제약 조건에 따른 성능 예측 모델링 및 알고리즘을 제안하고 이를 바탕으로 실행할 워크로드를 선택하면 41%의 성능 향상을 보인다.
클라우드 컴퓨팅 환경에서는 고성능 컴퓨팅을 지원하기 위해 사용자에게 GPU(Graphic Processing Unit)가 할당된 가상머신을 제공하여 사용자가 고성능 응용을 실행할 수 있도록 지원한다. 일반적인 컴퓨팅 환경에서 한 명의 사용자가 GPU를 독점해서 사용하기 때문에 자원 경쟁으로 인한 문제가 상대적으로 적게 발생하지만 독립적인 여러 사용자가 컴퓨팅 자원을 공유하는 클라우드 환경에서는 자원 경쟁으로 인해 서로 성능 영향을 미치는 문제를 발생시킨다. 본 논문에서는 여러 개의 가상머신이 단일 GPU를 공유하는 RPC(Remote Procedure Call) 기반 GPU 가상화 환경에서 다수의 가상머신이 GPGPU(General Purpose computing on Graphics Processing Units) 작업을 수행할 때 GPU 메모리 입력 경쟁으로 인해 발생하는 커널 함수의 실행 지연 문제를 분석한다.
컴퓨터생성홀로그램은 수학적으로 모델링된 광학적인 현상을 컴퓨터로 연산한 것이다. 이때 방대한 량의 연산이 필요하기 때문에 실시간으로 고해상도의 홀로그램을 얻기 위해서는 고속 기법이 필요하다. 본 논문에서는 CGH를 위한 두 가지 병렬화를 제안한다. 첫 번째는 GPU 내에서 CGH 알고리즘을 병렬화하는 것이고, 두 번째는 다수의 GPU를 위한 병렬화이다. 제안한 알고리즘 구조는 CUDA를 이용하여 GTX780 Ti GPU에 구현하였다. 약 10K의 입체 정보를 이용하여 $1,024{\times}1,024$의 컬러 홀로그램을 생성하는데 약 106ms가 소요된다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제20권4호
/
pp.277-293
/
2016
We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.