• 제목/요약/키워드: General Purpose Graphic Processing Unit (GPGPU)

검색결과 17건 처리시간 0.028초

GPGPU기반의 디지털 홀로그램 콘텐츠의 고속 생성 기법 (High-Speed Generation Technique of Digital holographic Contents based on GPGPU)

  • 이윤혁;김동욱;서영호
    • 디지털산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.151-163
    • /
    • 2013
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. Digital hologram is calculated by modeling the interference phenomenon between an object wave and a reference wave. The modeling for digital holograms is called by computer generated hologram (CGH) Generally, CGH requires a very large amount of calculation. So if holograms are generated in real time, high-speed method should be needed. In this paper, we analyzed CGH equation, optimized it for mapping general purpose graphic processing unit (GPGPU), and proposed a optimized CGH calculation technique for GPGPU by resource allocation and various experiments which include block size changing, memory selection, and hologram tiling. The implemented results showed that a digital hologram that has $1,024{\times}1,024$ resolution can be generated during approximately 24ms, using 1K point clouds. In the experiment, we used two GTX 580 GPGPU of nVidia Inc.

GPGPU 기반의 효율적인 카메라 ISP 구현 (Implementing Efficient Camera ISP Filters on GPGPUs Using OpenCL)

  • 박종태;;홍진건
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.1784-1787
    • /
    • 2010
  • General Purpose Graphic Processing Unit (GPGPU) computing is a technique that utilizes the high-performance many-core processors of high-end graphic cards for general-purpose computations such as 3D graphics, video/image processing, computer vision, scientific computing, HPC and many more. GPGPUs offer a vast amount of raw computing power, but programming is extremely challenging because of hardware idiosyncrasies. The open computing language (OpenCL) has been proposed as a vendor-independent GPGPU programming interface. OpenCL is very close to the hardware and thus does little to increase GPGPU programmability. In this paper we present how a set of digital camera image signal processing (ISP) filters can be realized efficiently on GPGPUs using OpenCL. Although we found ISP filters to be memory-bound computations, our GPGPU implementations achieve speedups of up to a factor of 64.8 over their sequential counterparts. On GPGPUs, our proposed optimizations achieved speedups between 145% and 275% over their baseline GPGPU implementations. Our experiments have been conducted on a Geforce GTX 275; because of OpenCL we expect our optimizations to be applicable to other architectures as well.

GPGPU를 이용한 홀로그램 생성 가속화 방법 (Hologram Generation Acceleration Method Using GPGPU)

  • 이윤혁;김동욱;서영호
    • 방송공학회논문지
    • /
    • 제22권6호
    • /
    • pp.800-807
    • /
    • 2017
  • 컴퓨터를 이용하여 홀로그램을 생성하기 위해서는 방대한 양의 계산이 필요하다. 이를 고속화하기 위해 GPGPU(General Purpose computing on Graphic Process Unit)를 이용하여 병렬 프로그래밍을 통한 고속화 방법들이 많이 연구되었다. 본 논문에서는 홀로그램 화소 기반의 병렬처리에서 생기는 병목현상을 줄이고, 공통항을 이용한 가속화 방법을 제안한다. 또한 최적의 쓰레드를 결정하기 위해 nVidia사의 CUDA와 함께 제공되는 Visual Profiler를 이용한 최적화 방법을 소개한다. 구현 결과 기존 연구 대비 최대 40%의 계산시간을 줄일 수 있었다.

SIMT 구조 기반 GPGPU를 이용한 고속 Rasterizer 구현 (Implememtation of Fast Rasterizer processing using GPGPU based on SIMT structure)

  • 김치용
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.276-279
    • /
    • 2017
  • 본 논문에서는 디스플레이 장치의 화면을 픽셀 단위로 구성하는 Rasterizer의 가속화를 위하여 SIMT구조의 GPGPU(General Purpose computing on Graphics Processing Units)를 사용하였다. GPU는 많은 수의 ALU를 가지고 있고, 병렬처리하기 때문에 연산처리가 매우 빠르다. 따라서 본 논문에서는 연산을 순차적으로 수행하는 CPU와 연산을 병렬적으로 수행하는 GPU를 이용하여 3D그래픽스 모델을 생성하는 rasterizer를 구현했다. 한 프레임 생성 시 Intel CPU를 이용한 rasterizer보다 본 논문에서 제안하는 rasterizer가 1.45배 좋은 성능을 확인하였다.

IPC-based Dynamic SM management on GPGPU for Executing AES Algorithm

  • Son, Dong Oh;Choi, Hong Jun;Kim, Cheol Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.11-19
    • /
    • 2020
  • 최신 GPU는 GPGPU를 활용하여 범용 연산이 가능하다. 뿐만 아니라, GPU는 내장된 다수의 코어를 활용하여 강력한 연산 처리량을 제공한다. AES 알고리즘은 다수의 병렬 연산을 요구하지만 CPU 구조에서는 효율적인 병렬처리가 이뤄지지 않는다. 따라서, 본 논문에서는 강력한 병력 연산 자원을 활용하는 GPGPU 구조에서 AES 알고리즘을 수행함으로써 AES 알고리즘 처리시간을 줄여보았다. 하지만, GPGPU 구조는 AES 알고리즘 같은 암호알고리즘에 최적화되어 있지 않다. 그러므로 AES 알고리즘에 최적화될 수 있도록 재구성 가능한 GPGPU 구조를 제안하고자 한다. 제안된 기법은 SM의 개수를 동적으로 할당하는 IPC 기반 SM 동적 관리 기법이다. IPC 기반 SM 동적 관리 기법은 GPGPU 구조에서 동작하는 AES의 IPC를 실시간으로 반영하여 최적의 SM의 개수를 동적으로 할당한다. 실험 결과에 따르면 제안된 동적 SM 관리 기법은 기존의 GPGPU 구조와 비교하여 하드웨어 자원을 효과적으로 활용하여 성능을 크게 향상시켰다. 일반적인 GPGP 구조와 비교하여, 제안된 기법의 AES의 암호화/복호화는 평균 41.2%의 성능 향상을 보여준다.

GPGPU를 위한 공유 메모리 최적화 (Optimizing Shared Memory Accesses for GPGPU Computations)

  • 쟌 느앗 프엉;이명호;홍석원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.197-199
    • /
    • 2012
  • 최근 GPU 의 뛰어난 부동 소수점 연산 능력을 활용하여 그래픽 이외에 다양한 응용 프로그램들의 병렬화 및 성능최적화가 활발하게 이루어지고 있다. 이러한 GPU 의 성능을 극대화하기 위해서는 메모리 계층구조 및 shared memory 를 비롯한 on-chip 메모리의 사용을 최적화하는 것이 필수적이다. 본 논문에서는 이러한 shared memory 의 사용을 최적화하기 위한 기법들을 제안하고, 이를 패턴 매칭 응용 프로그램에 적용하여 효용성을 검증한다.

동시에 실행되는 워크로드 조합에 따른 GPGPU 성능 분석 (Analysis of the GPGPU Performance for Various Combinations of Workloads Executed Concurrently)

  • 김동환;엄현상
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권3호
    • /
    • pp.165-170
    • /
    • 2017
  • GPGPU의 높은 연산 처리 능력을 활용하여 길고 복잡한 계산을 하려는 시도가 많이 있다. GPGPU 프로그램의 특성상 host와 device 사이에 메모리 복사가 필요하다. 해당 메모리 복사 latency가 길 경우 프로그램의 성능에 많은 영향을 준다. 그래서 GPGPU를 활용한 프로그래밍은 최적화에 따른 성능 차이가 크다. 여러 개의 GPGPU 프로그램을 동시에 실행시키면 메모리 복사와 GPGPU 컴퓨팅이 중첩이 되어 메모리 복사 latency hiding 효과를 기대할 수 있다. 이 논문에서는 메모리 복사 latency hiding을 분석한다. 또 메모리 복사의 성능을 높이기 위해 pinned memory를 사용했을 경우의 제약 조건에 따른 성능 예측 모델링 및 알고리즘을 제안하고 이를 바탕으로 실행할 워크로드를 선택하면 41%의 성능 향상을 보인다.

RPC 기반 GPU 가상화 환경에서 다중 가상머신의 GPU 메모리 입력으로 인한 커널 함수의 지연 문제 분석 (Analyzing delay of Kernel function owing to GPU memory input from multiple VMs in RPC-based GPU virtualization environments)

  • 강지훈;김수균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.541-542
    • /
    • 2021
  • 클라우드 컴퓨팅 환경에서는 고성능 컴퓨팅을 지원하기 위해 사용자에게 GPU(Graphic Processing Unit)가 할당된 가상머신을 제공하여 사용자가 고성능 응용을 실행할 수 있도록 지원한다. 일반적인 컴퓨팅 환경에서 한 명의 사용자가 GPU를 독점해서 사용하기 때문에 자원 경쟁으로 인한 문제가 상대적으로 적게 발생하지만 독립적인 여러 사용자가 컴퓨팅 자원을 공유하는 클라우드 환경에서는 자원 경쟁으로 인해 서로 성능 영향을 미치는 문제를 발생시킨다. 본 논문에서는 여러 개의 가상머신이 단일 GPU를 공유하는 RPC(Remote Procedure Call) 기반 GPU 가상화 환경에서 다수의 가상머신이 GPGPU(General Purpose computing on Graphics Processing Units) 작업을 수행할 때 GPU 메모리 입력 경쟁으로 인해 발생하는 커널 함수의 실행 지연 문제를 분석한다.

  • PDF

다중 GPGPU를 이용한 컴퓨터 생성 홀로그램의 병렬화 구현 (Implementation of Parallel Computer Generated Hologram Using Multi-GPGPU)

  • 서영호;이윤혁;김동욱
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1177-1186
    • /
    • 2014
  • 컴퓨터생성홀로그램은 수학적으로 모델링된 광학적인 현상을 컴퓨터로 연산한 것이다. 이때 방대한 량의 연산이 필요하기 때문에 실시간으로 고해상도의 홀로그램을 얻기 위해서는 고속 기법이 필요하다. 본 논문에서는 CGH를 위한 두 가지 병렬화를 제안한다. 첫 번째는 GPU 내에서 CGH 알고리즘을 병렬화하는 것이고, 두 번째는 다수의 GPU를 위한 병렬화이다. 제안한 알고리즘 구조는 CUDA를 이용하여 GTX780 Ti GPU에 구현하였다. 약 10K의 입체 정보를 이용하여 $1,024{\times}1,024$의 컬러 홀로그램을 생성하는데 약 106ms가 소요된다.

A PRICING METHOD OF HYBRID DLS WITH GPGPU

  • YOON, YEOCHANG;KIM, YONSIK;BAE, HYEONG-OHK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.277-293
    • /
    • 2016
  • We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.