H|383]

= o] = 57 O =Z =
GPGPU & A& & W= A3}
R LT 2
WA et RO T, A BUA AT W A 382
e-mail: myunghol@mju.ac.kr
e of

< GPU 9 Hold F5 A4 At 58S &8sto] gy oleld Y &8 ZraHEY
Hdst 8 A J]@lﬁrﬂ' gutslA o] Fojxar Quk. o]#d GPU 9 ATS Fudlsly] Ysis
w2 AST3E 2 shared memory & Y] E3T on-chip MR 9 ALES HAslsl= Ao 440l
th 3 =wol A= o] 2]gh shared memory o] ARES HASHs7] HF WSS Altetar, o] & W
iy &8 TR A&t a84S A

Optimizing Shared Memory Accesses for GPGPU Computations

Nhat-Phuong Tran, Myungho Lee*, Sugwon Hong
Dept. of Compute Science and Engineering, Myongji University
38-2 San Namdong, Cheo-In Gu, Yong In, Kyung Ki Do, Korea

Abstract

Recently, a lot of general-purpose application programs in addition to graphic applications have been
parallelized for boosting their performance using Graphic Processing Unit (GPU)’s excellent floating-point
performance. In order to maximize the application performance on GPUs, optimizing the memory hierarchy and
the on-chip caches such as the shared memory is essential. In this paper, we propose techniques to optimize the
shared memory, and verify its effectiveness using a pattern matching application program.

1. Introduction

Recently, the Graphic Processing Unit (GPU) is becoming
increasingly popular for various applications. The latest GPU
architectures have incorporated Shader, Vertex, Pixel units
into multiple uniform programmable processing units or
cores which were separate processing units in the earlier
GPU architectures. With the new architecture, the number of
fine-grain cores has dramatically increased and huge
floating-point performance improvements are made possible
[4], [5]. Furthermore, on-chip caches such as the shared
memory and the texture/constant caches are built on chip to
effectively reduce the memory access latencies, whereas
previous GPU’s memory hierarchy was designed mainly to
maximize the memory bandwidths.

In order to optimize the application’s performance on the
GPU, it is crucial to optimize the on-chip memories such as
the shared memory, texture/constant cache, etc. The shared
memory, for example, is totally under programmer’s control
whereas the other texture/constant caches are managed with
the hardware control. Therefore, user-level techniques to
optimize the use of the shared memory have great influences
on the overall applications’ performance. In this paper, we
propose techniques to optimize the shared memory by
coalescing the global memory accesses and by avoiding bank
conflicts using an efficient scheme to store the data returned
from the off-chip global memory loads. By applying these
techniques to a pattern matching application, Aho-Corasick
algorithm [1], we’ve observed significant performance
improvements.

* Corresponding author: Myungho Lee (myunghol@mju.ac.kr)

In the following sections, we present our techniques
(Section 2) and performance evaluation results (Section 3),
with conclusions (Section 4).

0 t1 t2 t3 t14 t15

vy vy
e I I I I XL

128 132 136 140 144 184 188 192
Yooy by
!

|
16 loads from 16 threads combined into 1 load

(Figure 1) Coalesced accesses: 16 threads cooperate to read

64 bytes together

2. Optimizing Shared Memory Accesses

When data is loaded from the off-chip global memory to
the on-chip shared memory for computations on the GPU, we
need to consider techniques to optimize the memory
performance. One of the most important performance
considerations is to coalesce the global memory accesses.
For example, let’s assume that the input text data is buffered
in a sequential fashion in the global memory and each
character contains one byte. The data is divided amongst the
multiple threads for the parallel computation. If each thread
slides on its own data and naively loads each character from
the global memory to the shared memory, each thread reads a
long sequence of data sequentially. Thus the total latency to

-197 -



H382) AT EHz2Ists) FAlstE

HIN3| =2F H193 25 (2012, 11)

load data needed for each thread will be high. In order to
solve this problem, we let threads of a block cooperate to
read as a half warp and each thread read four bytes (one word
of integer) at one time. Figure 1 above show the case where
16 threads cooperate to load 64 bytes data. These 16 requests
are combined into 1 global memory access request as they
fall within 128 bytes memory address boundaries. Thus it can
save a lot of time to access the shared memory. It also saves a
lot of the memory bandwidths.

When the data needed to be loaded into the shared
memory is longer than the size of the data loaded by threads
of a block at one time, threads of a block need to load data
multiple times cooperatively. For example, if we assume the
size of the data to be loaded into the shared memory as 1024
-bytes and there are 16 threads per block (see Figure 2).
Because each thread read one 4-byte word at one time, 16
threads of a block need 1024 / (4*16) = 16 loads from the
global memory to the shared memory to load up the 1024-
bytes data.

[AIBICIOIEIFIGIH] ATRIS I TIUIVIWIXT ] Global Memory
Thread Block 0
—_— —
t0 t 12 t15 t0
The first load
Need 15 more loads to fill shared memory
[AIBICIBIEIFIGIH] GTRTSTTIUTVIWIX] T T ] Shared Memory

(Figure 2) Loading data from global memory to the shared
memory (Data size to be loaded into the shared memory=1024-
bytes, number of threads per thread block = 16, each thread
reads 4 bytes at one time)

Synchronization of data will be done to make sure that all
threads transferred data from the global memory to the
shared memory successfully before threads process other
works. After transferring data to the shared memory, each
thread will apply AC algorithm on its own chunk as
mentioned in global memory approach.

After reading data to the shared memory using coalescing
explained above, each thread of block needs to apply its
computations with respect to its portion of the data. In order
to service a number of simultaneous accesses at the same
time and achieve high memory bandwidth, the shared
memory is divided into multiple banks. If there are multiple
simultaneous accesses to the same bank, it results in a bank
conflict. Conflicting accesses to be same bank are serialized
which affects the program performance.

When the data for each thread is long, it spreads out
through many banks. If each thread reads data in the
sequential fashion, threads access data banks randomly.
These accesses make a lot of bank conflicts and makes the
program performance drop noticeable.

Need more loads ‘o fill shared memory

Thefirst load o~

— ~

3o 31030 I 0 Glosal Metnory

X R RATR]

BlockD

|

3 L0 L L 5555511 10 T 5.5 LA LS L0 O O 353 R BN T
|

(Figure 3) Arranges the data loaded from global memory to
shared memory to avoid bank conflicts

In order to avoiding the bank conflicts, stores of the
loaded data from the global memory to the shared memory
need to be carefully arranged. We let multiple threads
cooperate to read as half warp and each thread loads four
bytes at one time as explained above. In order to avoid the
shared memory bank conflicts, bytes loaded by threads are
stored alternately into the shared memory at addresses which
are multiple of 16 and mapped to the same shared memory
bank (see Figure 3). Using the above storing scheme, data
stored in each bank of the shared memory has the data layout
as shown in Figure 4. Therefore, each thread accesses its own
data from single shared memory bank and the bank conflicts

can be avoided.

t0 t1 t15

Bank 0 Bank 1 Bank 15

(Figure 4) Data distributed to 16 banks of the shared memory
to avoid bank conflicts

3. Experimental Results

We applied the techniques explained in Section 2 to a
pattern matching algorithm, Aho-Corasick (AC). AC
algorithm [1] is a multiple patterns matching algorithm
which can simultaneously match a number of patterns for a
given finite set of strings (or dictionary). The AC algorithm is
commonly used in various pattern matching applications
such as network intrusion detection, genome/protein
matching for bio-sequence analysis, image processing,
among many others. In network intrusion detection, for
example, intensive pattern matching operations are
performed for a deep packet inspection using the AC
algorithm. In order to speed up the pattern matching and
meet the real-time performance requirement imposed on
these applications, achieving high performance for AC
algorithm is crucial.

We implemented three experiments. In the first one, we
used the off-chip global memory only (GM experiment). In
the second one, we used the shared memory with the
memory access coalescing only when accessing the global
memory for loading the data to the shared memory (SM-1
experiment). In the third one, we further used an
optimization technique to avoid the shared memory bank
conflicts (SM-2 experiment). Our experiments were
conducted on a system including Intel multi-core processor
(2.2 Ghz Intel Core 2 Duo) with 2GB of main memory,
Nvidia Geforce GTX 285 GPU with 240 thread processors
(cores) organized in 8 streaming multiprocessors, operating
at 1.48 Ghz with 1 GB device memory. The OS is Centos 5.5.
We used the input data sizes in the range of SOKB — 200MB
and the number of patterns in the range of 100 — 20,000.

Figure 5, 6, and 7 show the run times of 3 experiments for
a range of input data sizes and for a range of patterns. First of
all, the SM approaches (SM-1, SM-2) perform faster than the
GM approach by 5~10 times. Therefore the benefit of the
shared memory is significant. In general, the run times

- 198 -



H|38%]

shm e Aalats Slste

HIN3| =2F H193 25 (2012, 11)

increase as the data size increase and as the number of
patterns increase. As the input data size increases, however,
the run time increase for the SM-2 slows down with the
increase in the number of patterns.

0.25

=100
=200

<
8

=]
[y
ur

=500

==1,000

=
[y

Run Time (sec)

—2,000

o
o
@

—8—5,000

10,000
20,000

=}

—1
SO0KB S00KB 1MB 20MB 50MB 100MB200MB

RO
T T T T 1

Data Size

(Figure 5) Runtimes of the GM using different data

sizes and different numbers of patterns

input

0.0700

—+—100

0.0600 = 200

0.0500 —&—500

——1000
0.0400

== 2000
00300

—8—5000

Runtime {sec)

0.0200 10000

20000

0.0100

0.0000

50KB SO00KE 1MB 20MB 50MB 100MB 200 MB

Data Size

(Figure 6) Runtimes of the SM-1 using different data

sizes and different numbers of patterns

input

0.02

0.018

0.016

—4— 100
0.014

—i—200
0.012

001 —&— 500

—=—1000

Runtime (sec)

0.008
—#—2000

0.006

0.004 —&— 5000

0002 4 10000

0 +—E— i - T - . 20000

50KB 500KB 1MB 20MB 50MB 100MB 200MB

Data Size

(Figure 7) Runtimes of the SM-2 using different data

sizes and different numbers of patterns

input

Figure 8 shows the speedup of the SM-2 approach over
the SM-1. Thus it shows the benefit of avoiding the shared
memory bank conflicts. The run time of the SM-2 performs
from 1.5 ~ 4.6 times faster than the SM-1. This shows that
the bank conflict avoidance has significant performance
impacts.

100

=200

=500

Speedup

1000

W 2000

= 5000
10000
20000

S50KB 500KB

1MB 20MB 50MB 100MB 200MB

Data Size

(Figure 8) Speedups of the optimized SM approach (SM-2)
compared with the SM-1 using different input data size and
different number of patterns

4. Conclusion

In this paper, we proposed new techniques to optimize the
shared memory performance on the GPU. The proposed
approach coalesces the data accesses to the global memory
and arranges the stores of the loaded data from the global
memory to the shared memory so that the shared memory
bank conflicts can be avoided. Applying the new techniques
to the AC pattern matching algorithm achieved significant
performance improvements.

5. Acknowledgement

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science, and
Technology (Grant No: 2012-0002264).

References

[1] A.V. Aho and M.J. Corasick, “Efficient string matching:
An aid to bibliographic search”, Communications of the
ACM, vol. 20, Session 10, Oct. 1977, pp. 761-772.

[2] Marc Norton, “Optimizing Pattern Matching for Intrusion
Detection”, http://docs.idsresearch.org/OptimizingPatter

nMatchingForlDS.pdf, July 2004
NVIDIA, “CUDA Best Practices Guide: NVIDIA

CUDA C Programming Best Practices Guide — CUDA
Toolkit 4.0”, May, 2011.
NVIDIA, "Nvidia gtx280",
http://kr.nvidia.com/object/geforce family kr.html
[5] Giorgos Vasiliadis, Spiros Antonatos, “Gnort: High
Performance Network Intrusion Detection Using
Graphics Processors”, RAID, 2008, pp. 116-134.

(3]

(4]

- 199 -





