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요       약 

최근 GPU 의 뛰어난 부동 소수점 연산 능력을 활용하여 그래픽 이외에 다양한 응용 프로그램들의 
병렬화 및 성능최적화가 활발하게 이루어지고 있다. 이러한 GPU 의 성능을 극대화하기 위해서는 
메모리 계층구조 및 shared memory 를 비롯한 on-chip 메모리의 사용을 최적화하는 것이 필수적이

다. 본 논문에서는 이러한 shared memory 의 사용을 최적화하기 위한 기법들을 제안하고, 이를 패턴

매칭 응용 프로그램에 적용하여 효용성을 검증한다. 
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Abstract 

Recently, a lot of general-purpose application programs in addition to graphic applications have been 
parallelized for boosting their performance using Graphic Processing Unit (GPU)’s excellent floating-point 
performance. In order to maximize the application performance on GPUs, optimizing the memory hierarchy and 
the on-chip caches such as the shared memory is essential. In this paper, we propose techniques to optimize the 
shared memory, and verify its effectiveness using a pattern matching application program. 

 

1. Introduction 

Recently, the Graphic Processing Unit (GPU) is becoming 
increasingly popular for various applications. The latest GPU 
architectures have incorporated Shader, Vertex, Pixel units 
into multiple uniform programmable processing units or 
cores which were separate processing units in the earlier 
GPU architectures. With the new architecture, the number of 
fine-grain cores has dramatically increased and huge 
floating-point performance improvements are made possible 
[4], [5]. Furthermore, on-chip caches such as the shared 
memory and the texture/constant caches are built on chip to 
effectively reduce the memory access latencies, whereas 
previous GPU’s memory hierarchy was designed mainly to 
maximize the memory bandwidths.  

In order to optimize the application’s performance on the 
GPU, it is crucial to optimize the on-chip memories such as 
the shared memory, texture/constant cache, etc. The shared 
memory, for example, is totally under programmer’s control 
whereas the other texture/constant caches are managed with 
the hardware control. Therefore, user-level techniques to 
optimize the use of the shared memory have great influences 
on the overall applications’ performance. In this paper, we 
propose techniques to optimize the shared memory by 
coalescing the global memory accesses and by avoiding bank 
conflicts using an efficient scheme to store the data returned 
from the off-chip global memory loads. By applying these 
techniques to a pattern matching application, Aho-Corasick 
algorithm [1], we’ve observed significant performance 
improvements.  

In the following sections, we present our techniques 
(Section 2) and performance evaluation results (Section 3), 
with conclusions (Section 4).  

  

 
(Figure 1) Coalesced accesses: 16 threads cooperate to read 
64 bytes together 

2. Optimizing Shared Memory Accesses 

When data is loaded from the off-chip global memory to 
the on-chip shared memory for computations on the GPU, we 
need to consider techniques to optimize the memory 
performance. One of the most important performance 
considerations is to coalesce the global memory accesses. 
For example, let’s assume that the input text data is buffered 
in a sequential fashion in the global memory and each 
character contains one byte. The data is divided amongst the 
multiple threads for the parallel computation. If each thread 
slides on its own data and naively loads each character from 
the global memory to the shared memory, each thread reads a 
long sequence of data sequentially. Thus the total latency to 
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load data needed for each thread will be high. In order to 
solve this problem, we let threads of a block cooperate to 
read as a half warp and each thread read four bytes (one word 
of integer) at one time. Figure 1 above show the case where 
16 threads cooperate to load 64 bytes data. These 16 requests 
are combined into 1 global memory access request as they 
fall within 128 bytes memory address boundaries. Thus it can 
save a lot of time to access the shared memory. It also saves a 
lot of the memory bandwidths.  

When the data needed to be loaded into the shared 
memory is longer than the size of the data loaded by threads 
of a block at one time, threads of a block need to load data 
multiple times cooperatively. For example, if we assume the 
size of the data to be loaded into the shared memory as 1024 
-bytes and there are 16 threads per block (see Figure 2). 
Because each thread read one 4-byte word at one time, 16 
threads of a block need 1024 / (4*16) = 16 loads from the 
global memory to the shared memory to load up the 1024-
bytes data. 

(Figure 2) Loading data from global memory to the shared 

memory (Data size to be loaded into the shared memory=1024- 

bytes, number of threads per thread block = 16, each thread 

reads 4 bytes at one time) 

Synchronization of data will be done to make sure that all 
threads transferred data from the global memory to the 
shared memory successfully before threads process other 
works. After transferring data to the shared memory, each 
thread will apply AC algorithm on its own chunk as 
mentioned in global memory approach. 

After reading data to the shared memory using coalescing 
explained above, each thread of block needs to apply its 
computations with respect to its portion of the data. In order 
to service a number of simultaneous accesses at the same 
time and achieve high memory bandwidth, the shared 
memory is divided into multiple banks. If there are multiple 
simultaneous accesses to the same bank, it results in a bank 
conflict. Conflicting accesses to be same bank are serialized 
which affects the program performance.  

When the data for each thread is long, it spreads out 
through many banks. If each thread reads data in the 
sequential fashion, threads access data banks randomly. 
These accesses make a lot of bank conflicts and makes the 
program performance drop noticeable. 

 
(Figure 3) Arranges the data loaded from global memory to 

shared memory to avoid bank conflicts 

 In order to avoiding the bank conflicts, stores of the 
loaded data from the global memory to the shared memory 
need to be carefully arranged. We let multiple threads 
cooperate to read as half warp and each thread loads four 
bytes at one time as explained above. In order to avoid the 
shared memory bank conflicts, bytes loaded by threads are 
stored alternately into the shared memory at addresses which 
are multiple of 16 and mapped to the same shared memory 
bank (see Figure 3). Using the above storing scheme, data 
stored in each bank of the shared memory has the data layout 
as shown in Figure 4. Therefore, each thread accesses its own 
data from single shared memory bank and the bank conflicts 
can be avoided.  

 
(Figure 4) Data distributed to 16 banks of the shared memory 

to avoid bank conflicts 

3. Experimental Results 

We applied the techniques explained in Section 2 to a 
pattern matching algorithm, Aho-Corasick (AC). AC 
algorithm [1] is a multiple patterns matching algorithm 
which can simultaneously match a number of patterns for a 
given finite set of strings (or dictionary). The AC algorithm is 
commonly used in various pattern matching applications 
such as network intrusion detection, genome/protein 
matching for bio-sequence analysis, image processing, 
among many others. In network intrusion detection, for 
example, intensive pattern matching operations are 
performed for a deep packet inspection using the AC 
algorithm. In order to speed up the pattern matching and 
meet the real-time performance requirement imposed on 
these applications, achieving high performance for AC 
algorithm is crucial.  

We implemented three experiments. In the first one, we 
used the off-chip global memory only (GM experiment). In 
the second one, we used the shared memory with the 
memory access coalescing only when accessing the global 
memory for loading the data to the shared memory (SM-1 
experiment). In the third one, we further used an 
optimization technique to avoid the shared memory bank 
conflicts (SM-2 experiment). Our experiments were 
conducted on a system including Intel multi-core processor 
(2.2 Ghz Intel Core 2 Duo) with 2GB of main memory, 
Nvidia Geforce GTX 285 GPU with 240 thread processors 
(cores) organized in 8 streaming multiprocessors, operating 
at 1.48 Ghz with 1 GB device memory. The OS is Centos 5.5. 
We used the input data sizes in the range of 50KB – 200MB 
and the number of patterns in the range of 100 – 20,000.  

Figure 5, 6, and 7 show the run times of 3 experiments for 
a range of input data sizes and for a range of patterns. First of 
all, the SM approaches (SM-1, SM-2) perform faster than the 
GM approach by 5~10 times. Therefore the benefit of the 
shared memory is significant. In general, the run times 
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increase as the data size increase and as the number of 
patterns increase. As the input data size increases, however, 
the run time increase for the SM-2 slows down with the 
increase in the number of patterns. 

 

 
(Figure 5) Runtimes of the GM using different input data 

sizes and different numbers of patterns 

 
(Figure 6) Runtimes of the SM-1 using different input data 

sizes and different numbers of patterns 

 
(Figure 7) Runtimes of the SM-2 using different input data 

sizes and different numbers of patterns 

Figure 8 shows the speedup of the SM-2 approach over 
the SM-1. Thus it shows the benefit of avoiding the shared 
memory bank conflicts. The run time of the SM-2 performs 
from 1.5 ~ 4.6 times faster than the SM-1. This shows that 
the bank conflict avoidance has significant performance 
impacts.  

 

 
(Figure 8) Speedups of the optimized SM approach (SM-2) 

compared with the SM-1 using different input data size and 

different number of patterns 

4. Conclusion 

In this paper, we proposed new techniques to optimize the 
shared memory performance on the GPU. The proposed 
approach coalesces the data accesses to the global memory 
and arranges the stores of the loaded data from the global 
memory to the shared memory so that the shared memory 
bank conflicts can be avoided. Applying the new techniques 
to the AC pattern matching algorithm achieved significant 
performance improvements. 
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