• 제목/요약/키워드: Gene-specific repair

검색결과 49건 처리시간 0.031초

흰쥐 퇴행성 관절염모델을 이용한 봉독약침의 치료효과 (Effect of Bee Venom Herb-acupuncture on the Repair of Articular Full-thickness Defect in Rat)

  • 조미애;함대현;이승기;최선미;김건호;심인섭;강성길;이혜정
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.618-622
    • /
    • 2005
  • Articular cartilage is an important target for studying the arthritic diseases. To verify the therapeutic effects of bee venom herb-acupuncture in vivo, 3${\mu}$l of diluted solution of bee venom for herb-acupuncture were injected into articular cavity once a day during 3 months after making full-thickness defects in rat articular cartilage. Histological examination and immunohistochemistry indicated that the chondrocyte-like tissue was formed during the repair process of cartilage injury, and the expression of a cartilage-specific protein, collagen type II, were significantly activated. It means that the expression of the gene encoding type I collagen was down-regulated, whereas those of collagen type II were up-regulated. Histological examination by hematoxylin-eosin staining indicated that the cells regained their original round morphology. In addition, a homogeneous distribution of articular cartilage extracellular matrices was detected around the cells. These results suggested that bee venom herb-acupuncture was very effective on the recovery of articular chondrocyte phenotype.

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • 제41권1호
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.

비타민과 무기질의 새로운 영양학적 의미 (New Nutritional Concepts of Vitamins and Minerals)

  • 윤희상
    • Clinical and Experimental Pediatrics
    • /
    • 제48권12호
    • /
    • pp.1295-1309
    • /
    • 2005
  • Nowadays, the nutritional deficits are rarely seen in Korea. However, an increased availability of the highly palatable energy dense, nutrient-poor foods increases the risks of obesity and deficits of vitamins and minerals in the general population. Also, optimum intake of vitamins and minerals, which varies with age and genetic back ground, might not suffice the poor, young, obese, and elderly people. Young girls and individuals participating in weight reductions and aesthetic components are prone to micronutrient deficiencies because they restrict food intake and specific micronutrient rich foods. An inadequate intake of vitamins or minerals is associated with reduced physical performance and exercise capacity, increased obesity, decreased cognitive function, increased DNA damages such as single- and double-stranded breaks or oxidative DNA lesions, and accelerated aging process and increased neuronal damages with mitochondrial oxidative decay. Most of these deleterious effects of the deficit could be prevented by a one tablet of multivitamins with a good balanced diet. High dose B vitamins are frequently administered to overcome the metabolic inadequacy to the people with the less functional enzymes with increased Km values for their coenzymes due to the single gene mutation or due to the single nucleotide polymorphisms. And some certain antioxidant vitamins are also used in large quantities to overcome the oxidative stress and to repair the damages. In this review, new nutritional concepts of some vitamins and minerals, which are widely used and useful for the children, will be discussed.

Expression and Characterization of the Human rpS3 in a Methylotrophic Yeast Pichia pastoris

  • Kim, Joon;Lee, Jae-Yung;Jung, Sang-Oun;Youn, Bu-Hyun;Kwon, Oh-Sik
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.88-92
    • /
    • 2000
  • A human ribosomal protein S3 (rpS3), which also functions as a DNA repair enzyme(UV endonuclease III), was expressed in a methylotrophic yeast, Pichia pastoris, and biochemically characterized. UV endonuclease activity was preiously characterized, and this activity of mammalian rpS3 was found to be non-specfic upon purification and storage. Under the Pichia expression system, the subcloned cDNA of the human rpS3 gene revealed a peptide of 42 kDa by SDS-PAGE and Western blot. The secreted form of human rpS3 rendered no endonuclease activity while the intracellular form showed UV specific endonuclease activity by the nick circle assay.

  • PDF

RNA Mapping of Mutant Myotonic Dystrophy Protein Kinase 3'-Untranslated Region Transcripts

  • Song, Min-Sun;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • 제7권4호
    • /
    • pp.181-186
    • /
    • 2009
  • Myotonic dystrophy type 1 (DM1), which is a dominantly inherited neurodegenerative disorder, results from a CTG trinucleotide repeat expansion in the 3'-untranslated region (3'-UTR) of the myotonic dystrophy protein kinase (DMPK) gene. Retention of mutant DMPK (mDMPK) transcripts in the nuclei of affected cells has been known to be the main cause of pathogenesis of the disease. Thus, reducing the RNA toxicity through elimination of the mutant RNA has been suggested as one therapeutic strategy against DM1. In this study, we suggested RNA replacement with a trans -splicing ribozyme as an alternate genetic therapeutic approach for amelioration of DM1. To this end, we identified the regions of mDMPK 3'-UTR RNA that were accessible to ribozymes by using an RNA mapping strategy based on a trans-splicing ribozyme library. We found that particularly accessible sites were present not only upstream but also downstream of the expanded repeat sequence. Repair or replacement of the mDMPK transcript with the specific ribozyme will be useful for DM1 treatment through reduction of toxic mutant transcripts and simultaneously restore wild-type DMPK or release nucleus-entrapped mDMPK transcripts to the cytoplasm.

금나노입자 및 금이온의 수서생태독성 연구동향 (Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions)

  • 남선화;안윤주
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.313-319
    • /
    • 2012
  • Various nanomaterials may flow into the aquatic ecosystem via production, use, and treatment processes. Especially, gold nanoparticles (AuNPs) were categorized as manufactured nanomaterials presented by the Organization for Economic Cooperation and Development Working Party on Manufactured Nanomaterials (OECD WPMN) in 2010. AuNPs have been used in medical area, however, they were reported to induce cytotoxicity and oxidative DNA damage, as well as down-regulation of the DNA repair gene in mice and human cell lines. In this study, the aquatic toxicity data of AuNPs and gold ions were collected, with the specific test methods analyzed with respect to the form and size of AuNPs, test species, exposure duration, and endpoints. Currently, aquatic toxicity data of AuNPs and gold ions have been presented in 14 studies including 4 fish, 6 crustacean, 2 green algae, and 2 macrophytes studies, as well as a further 8 studies including 4 fish, 4 crustacean, 1 platyhelminthes, and 1 green algae, respectively. The AuNPs were 0.8-100 nm in size, as gold nanoparticles, gold nanorod, glycodendrimer-coated gold nanoparticles, and amine-coated gold nanoparticles. The tested endpoints were the individual toxicities, such as mortality, malformation, reproduction inhibition, growth inhibition and genetic toxicity such as oxidative stress, gene expression, and reactive oxygen species formation. The accumulation of AuNPs was also confirmed in the various receptor organs. These results are expected to be useful in understanding the aquatic toxicity of AuNPs and gold ions, as well as being applicable to future toxicity studies on AuNPs.

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1998년도 한국생물과학협회 학술발표대회
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF

비소세포 폐암환자의 객담 내 ERCC1 발현정도와 cisplatin 복합화학요법 후 치료반응 (Relation between ERCC1 Expression in Sputum and Survival after Cisplatin-Based Chemotherapy in Patients with Non-Small Cell Lung Cancer)

  • 양성우;최평락;류홍준;김진구;옥철호;장태원;정만홍
    • Tuberculosis and Respiratory Diseases
    • /
    • 제60권2호
    • /
    • pp.151-159
    • /
    • 2006
  • 목 적 : 폐암치료에 가장 널리 사용되는 cisplatin은 DNA와 결합하여 DNA 복제를 방해한다. 이렇게 손상된 부위를 복구하는 과정에 excision repair cross complementing gene 1 (ERCC1)이 작용한다. ERCC1이 활성화 되면, 정상세포는 DNA 손상을 줄일 수 있지만 종양세포의 경우 cisplatin의 효과는 감소하게 된다. 비소세포 폐암(non-small cell lung cancer, NSCLC) 환자에서 cisplatin을 포함하는 화학치료를 할 경우 예후인자로서 객담 ERCC1 정량측정의 의의를 조사하였다. 대상 및 방법 : 2001년 4월부터 2003년 8월 사이에 NSCLC로 진단되어 cisplatin과 taxane계(33명) 혹은 cisplatin과 gemcitabine(34명) 복합 화학치료를 받은 환자를 대상으로 하였다. 기관지 내시경검사를 실시한 후에 즉각 채취한 객담을 처리하여 c-DNA를 분리한 후, 객담속의 종양특이 유전자인 melanoma antigen gene (MAGE) 발현 여부는 RT-PCR로, ERCC1의 상대적 정량적 측정은 real-time PCR로 하였다. 환자의 치료반응 및 생존기간과 MAGE 발현여부 및 ERCC1의 발현정도와의 상관관계를 조사하였다. 결 과 : 객담에서 MAGE는 40.2%, ERCC1은 74.6%에서 발현되었다. ERCC1이 중앙값 이상인 경우와 미만인 군으로 나눠서 비교한 결과 ERCC1이 증가된 군의 중앙생존기간이 84주로 미만인 군의 44주보다 길었다(P=0.017). Taxane계를 사용한 군의 중앙생존기간이 79주로 gemcitabine 사용군의 47주에 비해 길었다(P=0.03). MAGE의 발현 여부는 생존기간과 유의한 관계는 없었으나, MAGE 발현군에서 ERCC1이 유의하게 증가되어 있었다(P=0.003). MAGE가 발현되지 않고 ERCC1이 증가된 군의 중앙생존기간은 103주로 그렇지 않은 군의 43주보다 길었고(P=0.008), MAGE가 발현된 경우는 두 군 간에 차이가 없었다(각각 62주 및 44주, P=0.348). 결 론 : NSCLC 환자의 객담에서 ERCC1을 정량 측정하는 것이 화학치료를 받는 환자의 생존기간을 예측하는 한 인자로 유용할 것으로 추정된다.

Sensitive and Noninvasive Detection of Aberrant SFRP2 and MGMT-B Methylation in Iranian Patients with Colon Polyps

  • Naini, M Alizade;Mokarram, P;Kavousipour, S;Zare, N;Atapour, A;Zarin, M Hassan;Mehrabani, G;Borji, M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2185-2193
    • /
    • 2016
  • Background: The pathogenesis of sporadic colorectal cancer (CRC) is influenced by the patient genetic background and environmental factors. Based on prior understanding, these are classified in two major pathways of genetic instability. Microsatellite instability (MSI) and CPG island methylator phenotype (CIMP) are categorized as features of the hypermethylated prototype, and chromosomal instability (CIN) is known to be indicative of the non-hypermethylated category. Secreted frizzled related protein 2 (SFRP2), APC1A in WNT signaling pathway and the DNA repair gene, O6-methylguanine-DNA methyltransferase (MGMT), are frequently hypermethylated in colorectal cancer. Detection of methylated DNA as a biomarker by easy and inexpensive methods might improve the quality of life of patients with CRC via early detection of cancer or a precancerous condition. Aim: To evaluate the rate of SFRP2 and MGMT hypermethylation in both polyp tissue and serum of patients in south Iran as compared with matched control normal population corresponding samples. Materials and Methods: Methylation-specific PCR was used to detect hypermethylation in DNA extracted from 48 polypoid tissue samples and 25 healthy individuals. Results: Of total polyp samples, 89.5% had at least one promoter gene hypermethylation. The most frequent methylated locus was SFRP2 followed by MGMT-B (81.2 and 66.6 percent respectively). Serologic detection of hypermethylation was 95% sensitive as compared with polyp tissue. No hypermethylation was detected in normal tissue and serum and its detection in patients with polyps, especially of serrated type, was specific. Conclusions: Serologic investigation for detection of MGMT-B, SFRP2 hypermethylation could facilitate prioritization of high risk patients for colonoscopic polyp detection and excision.