• Title/Summary/Keyword: Gene transformation

Search Result 806, Processing Time 0.03 seconds

Molecular Characterization and Event-Specific Marker Development of Insect Resistant Chinese Cabbage for Environmental Risk Assessment (환경위해성 평가를 위한 해충저항성 배추의 분자생물학적 특성 검정 및 계통 특이 마커 캐발)

  • Lim, Sun-Hyung;Kim, Na-Young;Lee, Si-Myung;Woo, Hee-Jong;Shin, Kong-Sik;Jin, Yong-Moon;Cho, Hyun-Suk
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Commercialization of genetically modified (GM) plants will be required the assessment of risks associated with the release of GM plants that should include a detailed risk assessment of their impacts in human health and the environment. Prior to GM plant release, applicants should provide the information on GM crops for approval. We carried out this study to provide the molecular data for risk assessment of the GM Chinese cabbage plants with insect-resistance gene, modified CryIAc, which we obtained by Agrobacterium-transformation. From the molecular analysis with GM Chinese cabbage, we confirmed the transgene copy number and stability, the expression of the transgene, and integration region sequences between the transgene and the Chinese cabbage genome. Based on the unique integration DNA sequences, we designed specific primer set to detect GM Chinese cabbage and set up the GM cabbage detection method by qualitative PCR analysis. Qualitative analysis with GM Chinese cabbage progenies analysis was revealed the same as the result of herbicide treatment. Our results provided the molecular data for risk assessment analysis of GM Chinese cabbage and demonstrated that the primer set proposed could be useful to detect GM Chinese cabbage.

Enhanced tolerance through increasing polyamine contents in transgenic tobacco plants with antisense expression of ACC oxidase gene (ACC oxidase 발현 억제 식물체에서 폴리아민 생합성 증가에 의한 스트레스 저항성 증강)

  • Wi, Soo-Jin;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Antisense construct of cDNA for senescencerelated ACC oxidase (CAO) cDNA isolated from carnation flowers were introduced into tobacco by Agrobacteriummediated transformation. The decreasing expression of NtACO and the reduction of ethylene production were observed in these transgenic lines. In contrast, the SAMDC transcripts and spermidine content were increased. The findings that higher content of spermidine in the ethylene suppressed transgenic plants compared with wild-type should be directly resulted in the enhancement of SAMDC activity followed by the increased accumulation of SAMDC transcript. To investigate the pathogenic response in these transgenic plants, wild-type and transgenic plants were inoculated with Phytophthora parasitica pv. nicotianae. Transgenic plants suppressing ethylene production showed the increased resistance against fungal pathogen, comparing with wild-type plant. PR-protein genes expression in CAO-AS-2 and CAOAS-4 were also higher at the normal growth condition and pathogenic response than in wild-type plants. The results of higher spermidine content and SAMDC activity in transgenic plants, CAO-AS-2 and CAO-AS-4, support the possibility that an increase in spermidine content might induce the higher transcripts of PR-protein genes. This results agreed with the phenomena that spermidine promoted the expression of PR1a and a SAMDC inhibitor, MGBG, decreased the expression of PR1a in leaf discs. These results suggest that the resistance against fungal pathogen in transgenic tobacco impaired in ethylene production might be caused by increasing in polyamine, especially spermidine, biosynthesis.

Increment of fructan biosynthesis in rice by transformation of 1-sst and 1-fft genes isolated from jerusalem artichoke (Helianthus tuberosus L.) (돼지감자 유래 1-sst와 1-fft 유전자의 형질전환 발현에 의한 벼의 fructan 생합성 증진)

  • Kang, Kwon-Kyoo;Song, Beom-Heon;Lee, Gyong-A;Lee, Hye-Jung;Park, Jin-Ha;Jung, Yu-Jin;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2010
  • Fructan has been found to accumulate in various tissues during periods when light levels increased carbon fixation where low temperatures reduced growth rates while photosynthesis continued. In this study, we have cloned 1-sucrose:sucrose fructosyl transferase(1-sst) and 1-fructan: fructan fructosyl transferase (1-fft, a key enzyme for the synthesis of fuctan) from Jerusalem Artichoke (Helianthus tuberosus L.). The recombinant vector with 1-sst and 1-fft has been constructed under the control of 35S promoter of KJGV-B2 vector and transgenic plants obtained by Agrobacterium tumefaciens LBA4404. PCR analysis carried out on the putative transgenic plants for amplification of the coding region of specific gene (1-sst, 1-fft), and HPT genes. Transgenic lines carrying of 1-sst and 1-fft were confirmed for integration into the rice genome using Southern blot hybridization and RT-PCR. The transgenic plants in $T_2$ generation were selected and expression pattern analysis revealed that 1-sst and 1-fft were stable. This analysis confirmed the presence of low-molecular-weight fructan in the seedling of the transgenic rices. Therefore, cold tolerance and carbohydrate metabolism will be possible to develop resistant plants using the transgenic rice.

Characterization of Transgenic Tall Fescue Plants Expressing Two Antioxidant Genes in Response to Environmental Stresses (두 가지 항산화유전자를 동시에 발현시킨 형질전환 톨 페스큐 식물체의 환경스트레스에 대한 내성 특성 해명)

  • Lee, Sang-Hoon;Lee, Ki-Won;Kim, Ki-Yong;Choi, Gi-Jun;Seo, Sung;Kwak, Sang-Soo;Kwon, Suk-Yoon;Yun, Dae-Jin;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • Environmental stress is the major limiting factor in plant productivity. As an effort to solve the global food and environmental problems using the plant biotechnology, we have developed transgenic tall fescue (Festuca arundinacea Schreb.) plants via Agrobacterium-mediated gene transfer method. To develop transgenic tall fescue plants with enhanced tolerance to the environmental stresses, both CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes were incorporated in a pIG121 binary vector and the both of the genes were controlled separately by an oxidative stress-inducible sweet potato peroxidase 2 (SWPA2) premoter expressed in chloroplasts. Leaf discs of transgenic plants showed 10-30% less damage compared to the wild-type when they exposed to a wide range of environmental stresses including methyl viologen (MV), $H_2O_2$ and heavy metals. In addition, when $200{\mu}M$ MV was sprayed onto the whole plants, transgenic plants showed a significant reduction of visible damage compared to wild-type plants that were almost damaged. These results suggest that over expression of CuZnSOD and APX genes in transgenic plants might be a useful strategy to protect the crops against a wide range of environmental stresses.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli

  • Han, Yunlei;Lu, Na;Chen, Qinghua;Zhan, Yuhua;Liu, Wei Liu;Lu, Wei;Zhu, Baoli;Lin, Min;Yang, Zhirong;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1339-1348
    • /
    • 2015
  • Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

Superoxide Dismutase and Peroxidase Activity of Transformed Callus in Tomato (형질전환된 토마토 캘러스의 Superoxide Dismutase와 Peroxidase 활성)

  • 유정민;정형진;김경민;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.177-181
    • /
    • 1998
  • This study was carried out to investigate activity difference in the superoxide dismutase (SOD) and peroxidase (POD) of tomato callus transformed with Agrobacterium containing the GUS gene. Than those of other two tomato cultivars, the hypocotyl explant of JA101 was shown to have higher POD and SOD specific activity of 23 unit/mg protein and 2,156 unit/mg protein, respectively. Relatively high frequency of callus formation was obtained from the hypocotyl explant on MS medium containing 1 mg/L 2,4-D for 30 days and its POD(47 unit/mg protein) and SOD (95,786 unit/mg protein) specific activities were higher than other 2,4-D concentration. The hypocotyl explant and callus cocultivated with Agrobacterium for 72 hours were transferred to MS medium supplemented with 1 mg/L 2,4-D, 30 mg/L kanamycin, 30 g/L sucrose and 4 g/L Gelrite. The hypocotyl explants transferred to the medium formed callus with 45.5% effeciency after 8 weeks. The transformation efficiency confirmed by GUS assay was 21.6%. POD specific activity of the transformed callus (54 unit/mg protein) were somewhat lower than the non-transformed callus (64 unit/mgg protein) and SOD specific activity of the transformed callus (30,300 unit/mg protein) were also lower than the non-transformed callus (37,077 unit/mg protein). However there was no significant difference in POD and SOD isozyme patterns between the transformed and the non-transformed calluses. From these results, it revealed that there was no difference of antioxidant enzyme activities between the transformed callus and the non-transformed callus in tomato.

  • PDF

Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan;Yi, Dalong;Yu, Jie;Xue, Shulin;Xiang, Yang;Zhang, Caiqin;Zhang, Zhengzhi;Zhang, Lixia;Ma, Zhengqiang
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.

Genome editing of hybrid poplar (Populus alba × P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein (현사시나무 원형질체에서 리보핵산단백질을 활용한 유전자 교정 방법 연구)

  • Park, Su Jin;Choi, Young-Im;Jang, Hyun A;Kim, Sang-Gyu;Choi, Hyunmo;Kang, Beum-Chang;Lee, Hyoshin;Bae, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.34-43
    • /
    • 2021
  • Targeted genome editing using the CRISPR/Cas9 system is a ground-breaking technology that is being widely used to produce plants with useful traits. However, for woody plants, only a few successful attempts have been reported. These successes have used Agrobacterium-mediated transformation, which has been reported to be very efficient at producing genetically modified trees. Nonetheless, there are unresolved problems with plasmid sequences that remain in the plant genome. In this study, we demonstrated a DNA-free genome editing technique in which purified CRISPR/Cas9 ribonucleoproteins (RNPs) are delivered directly to the protoplasts of a hybrid poplar (Populus alba × Populus glandulosa). We designed three single-guide RNAs (sgRNAs) to target the stress-associated protein 1 gene (PagSAP1) in the hybrid poplar. Deep sequencing results showed that pre-assembled RNPs had a more efficient target mutagenesis insertion and deletion (indel) frequency than did non-assembled RNPs. Moreover, the RNP of sgRNA3 had a significantly higher editing efficacy than those of sgRNA1 and sgRNA2. Our results suggest that the CRISPR/Cas9 ribonucleoprotein-mediated transfection approach is useful for the production of transgene-free genome-edited tree plants.

An Improved Method to Determine Corn (Zea mays L.) Plant Response to Glyphosate (Glyphosate에 대한 옥수수 반응의 개선된 검정방법)

  • Kim, Jin-Seog;Lee, Byung-Hoi;Kim, So-Hee;Min, Suk-Ki;Choi, Jung-Sup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Several methods for determining the response of corn to glyphosate were investigated to provide a fast and reliable method for identifying glyphosate-resistant corn in vivo. Two bioassays were developed. One assay is named 'whole plant / leaf growth assay', in which the herbicide glyphosate is applied on the upper part of 3rd leaf and the growth of herbicide-untreated 4th leaf is measured at 3 day after treatment. in this assay, the leaf growth of conventional corn was inhibited in a dose dependent from 50 to $1600{\mu}g/mL$ of glyphosate and growth inhibition at $1600{\mu}g/mL$ was 55% of untreated control. The assay has the potential to be used especially in the case that the primary cause of glyphosate resistance is related with a reduction of the herbicide translocation. Another assay is named 'leaf segment / shikimate accumulation assay', in which the four excised leaf segments ($4{\times}4mm$) are placed in each well of a 48-well microtiter plate containing $200{\mu}L$ test solution and the amount of shikimate is determined after incubation for 24 h in continuous light at $25^{\circ}C$. In this assay, 0.33% sucrose added to basic test solution enhanced a shikimate accumulation by 3 to 4 times and the shikimate accumulation was linearly occurred from 2 to $8{\mu}g/mL$ of glyphosate, showing an improved response to the method described by Shaner et al. (2005). The leaf segment / shikimate accumulation assay is simple and robust and has the potential to be used as a high throughput assay in the case that the primary cause of glyphosate resistance is related with EPSPS, target site of the herbicide. Taken together, these two assays would be highly useful to initially select the lines obtained after transformation, to investigate the migration of glyphosate-resistant gene into other weeds and to detect a weedy glyphosate-resistant corn in field.