• Title/Summary/Keyword: Gene survival

Search Result 708, Processing Time 0.027 seconds

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.

Up-regulation of Prothymosin alpha in THP-1 Cells Infected with Mycobacterium tuberculosis (결핵균 감염에 의한 THP-1 세포에서의 Prothymosin alpha 유전자 발현증가)

  • Song, Ho-Yeon;Jang, Kwang-Sik;Byoun, Hee-Sun;Lee, Shin-Je;Kim, Jin-Koo;Choe, Yong-Kyung;Ko, Kwang-Kjune
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.149-157
    • /
    • 2000
  • Mycobacterium tuberculosis is capable of growing and survival within macrophage. The purpose of this study was to identify the genes regulated by infection of mycobacteria in human monocytic THP-1 cells. We used the differential display reverse transcriptase polymerase chain reaction (DD RT-PCR) and nothern blot analysis to confirm the differentially expressed genes from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv, heat-killed Mycobacterium tuberculosis H37Rv and live Mycobacterium bovis BCG. Among many up or down-regulated clones, 27 clones were sequenced and compared with known genes on GenBank. Thirteen of over-expressed clones from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv were identical to human prothymosin alpha, eight were novel clones and six clones showed homology with Human ferritin H chain, Esherichia coli bgl, Mouse RNA-dependent EIF-2 alpha kinase, E. coli htrL, Hyaluronan receptor and T cell receptor. Our result suggests that Mycobacterium tuberculosis might regulate prothymosin alpha gene transcription in monocytic THP-1 cell.

  • PDF

Induction of HaCaT Cell Apoptosis by Sodium Nitroprusside (Sodium Nitroprusside로 유발한 HaCaT Cell의 Apoptosis)

  • Park, Yuri;Moon, Cheol;Kim, Sa-Hyun;Lee, Pyeongjae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.112-116
    • /
    • 2015
  • Nitric Oxide (NO) has been known to play important physiological and pathological roles. In this study, Sodium nitroprusside (SNP), NO donor, induced the apoptosis of HaCaT cell, human spontaneous immortal keratinocyte, which was investigated through DAPI staining and cleavage of PARP and caspase-3 protein. However, the expression level of Bip and CHOP, involved in ER stress, was not significantly changed as compared to the control cell group. Recent studies have showed that SIRT1, $NAD^+$-dependent deacetylase, is the key protein that controls cell survival and death. SNP treatment suppressed the SIRT1 gene expression, which indicated that apoptosis induced by SNP could be implicated in SIRT1 down-regulation.

Determination of HLA-A*02 Alleles Using Nested PCR-SSP in Korean Population

  • Lee, Kyung-Ok;Heo, Jeong-Ho-Ho;Kim, Hye-Jin;Lee, Eun-Mi;Hong, Sung-Hoi;Kim, Yoon-Jung
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.129-134
    • /
    • 1997
  • HLA-A2 is one of the most diversified HLA-class I antigen with 17 subtypes so far identified at the molecular level. HLA-A*02 subtyping has significant implications on the tissue typing for organ and bone marrow transplantations. Recently, DNA-based typing methods have been successfully applied to the elucidation of HLA gene polymorphisms. In the present study, HLA-A*O2 genotyping was established by using nested polymerase chain reaction-sequence specific primers (PCR-SSP) and distribution of A*O2 alleles were determined in Korean individuals. Genomic DNA prepared from four B-lymphoblastoid cell lines and lymphocytes from serologically defined 48 HLA-A2 Korean individuals by phenol/chloroform extractions was typed. The results of the four B-lymphoblastoid cells were consistent with the previous data typed by PCR analysis. Five A*O2 alleles-A*0201, A*0203, A*0206, A*0207 and A*0210-were commonly observed in a total of 17 A*02 alleles. Of these, A*0207 (f=49.0%) was the most frequent allele in Korean population. A*0206 (f=28.3%) and A*0201 (f=17.0%) were also found frequently while A*0203 and A*0210 types were observed in less than 5%. In conclusion, the high level of discrimination for HLA-A*O2 alleles will prove useful and informative in the study of transplant survival, and may identify the importance of allelic differences not readily detectable by serology on host and donor compatibility.

  • PDF

Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis (Bacillus subtilis의 Pho Regulon을 통한 인산 결핍 스트레스 반응)

  • Park, Jae-Yong
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Bacillus subtilis PhoP-PhoR two-component system (TCS) senses phosphate deficiency conditions, and then controls expression of the Pho regulon to prolong survival. The sensor histidine kinase, PhoR, is autophosphorylated and transfers the phosphate to the response regulator, PhoP. Phosphorylated PhoP (PhoP~P) binds to repeated 6-bp consensus PhoP binding sequences of Pho regulon promoters and activates or represses gene expression. Pho signal transduction systems are part of interconnected signal transduction network involving at least three TCSs (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), a global carbon metabolism regulator (CcpA), and transition state regulators (AbrB, ScoC). In addition, PhoP-PhoR TCS is cross related with YycF-YycG TCS by cross-regulation. While indescribable progress has been made in understanding phosphate deficiency stress response through refined expression of the Pho regulon in the recent past years, many important questions still remain. Solving these questions may provide important information for application study using B. subtilis.

Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana (OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가)

  • Park, Phun Bum
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1515-1522
    • /
    • 2012
  • The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one of the bZIP type transcription factors, which are involved in abiotic stress response and ABA signaling in rice. Expression of OsABF2 is induced by ABA and various stress treatments. Findings show that survival rates of OsABF2 over-expressing Arabidopsis lines were increased under drought, salt, and heat stress conditions. The germination ratio of OsABF2 over-expressing Arabidopsis lines was decreased in the presence of ABA. Results indicate that OsABF2 over-expressing Arabidopsis lines have enhanced abiotic stress tolerance and have increased ABA sensitivity.

Effects of Gagamgilgyung-tang on the Proliferation and Apoptosis of Human Lung Cancer Cell (가감길경탕이 인체 폐암세포의 증식 및 사멸에 미치는 영향에 관한 연구)

  • 이충섭;정희재;신순식;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.24-36
    • /
    • 2002
  • Objectives: The chemotherapeutic potential of Gagamgilgyung-tang for the treatment of human lung cancer, the antitumorigenic effects of Gagamgilgyung-tang on the proliferation and apoptosis of human lung cancer cell line A427 were investigated using molecular biological approaches, Methods: To determine Gagamgilgyung-tang concentrations which do not evoke cytotoxic damage to the cell line, cell viability was examined by MTT assay. To prove Gagamgilgyung-tang's antitumorigenic potential to human lung cancer, [3H]thymidine incorporation assay, trypan blue exclusion and Cpp32 protease activity assays and quantitative RT-PCR analysis were examined. Results: While A427 cells treated with $0.1-2.0{\mu\textrm{g}}/ml$ of Gagamgilgyung-tang showed no recognizable effect, marked reductions of cell viability were detected at concentrations over $5.0{\;}\mu\textrm{g}/ml$. DNA replication of A427 cells was inhibited by Gagamgilgyung-tang in a dose-dependent manner and Gagamgilgyung-tang induced the G1 cell cycle arrest through inhibition of DNA replication. Gagamgilgyung-tang triggered apoptotic cell death of A427 and enhanced the apoptotic sensitivity of the cells that were injured by a DNA damage-inducing chemotherapeutic drug etoposide. Gagamgilgyung-tang induces expression of growth-inhibiting genes such as p53 and p21/Wafl whereas it inhibited expression of growth-promoting genes such as c-Myc and Cyclin D1. Expression of a representative apoptosis-inducing gene Bax was also found to be induced by Gagamgilgyung-tang while apoptosis-suppressing Bcl-2 expression was not changed. Conclusions: Gagamgilgyung-tang could suppress the abnormal growth of tumor cells by suppressing the survival of genetically altered cells via induction of apoptosis. This study suggests that Gagamgilgyung-tang might have an antitumorigenic potential to human lung cancer cells, which might be associated with its growth-inhibiting and apoptosis-inducing properties.

  • PDF

Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans

  • Sim, Insuk;Park, Keun-Tae;Kwon, Gayeung;Koh, Jong-Ho;Lim, Young-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.883-892
    • /
    • 2018
  • Probiotics, including Enterococcus faecium, confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faecium by 16S rDNA gene sequence analysis, and designated as E. faecium L11. To evaluate the potential of E. faecium L11 as a probiotic, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E. faecium L11 showed >66% and >62% survival in artificial gastric juice (0.3% pepsin, pH 2.5) and simulated small intestinal juice (0.5% bile salt and 0.1% pancreatin), respectively. Heat-killed E. faecium L11 significantly (p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines (IL-6 and $TNF-{\alpha}$) by activated macrophages obtained from ICR mice. In addition, E. faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans. In addition, feeding E. faecium L11 significantly (p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E. faecium L11-fed worms. In conclusion, E. faecium L11, which prolongs the lifespan of C. elegans, may be a potent probiotic supplement for livestock.

Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association

  • Choi, Sukjung;Jin, Gwi-Deuk;Park, Jongbin;You, Inhwan;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1352-1359
    • /
    • 2018
  • Lactobacillus plantarum is a lactic acid bacterium that promotes animal intestinal health as a probiotic and is found in a wide variety of habitats. Here, we investigated the genomic features of different clusters of L. plantarum strains via pan-genomic analysis. We compared the genomes of 108 L. plantarum strains that were available from the NCBI GenBank database. These genomes were 2.9-3.7 Mbp in size and 44-45% in G+C content. A total of 8,847 orthologs were collected, and 1,709 genes were identified to be shared as core genes by all the strains analyzed. On the basis of SNPs from the core genes, 108 strains were clustered into five major groups (G1-G5) that are different from previous reports and are not clearly associated with habitats. Analysis of group-specific enriched or depleted genes revealed that G1 and G2 were rich in genes for carbohydrate utilization (${\text\tiny{L}}-arabinose$, ${\text\tiny{L}}-rhamnose$, and fructooligosaccharides) and that G3, G4, and G5 possessed more genes for the restriction-modification system and MazEF toxin-antitoxin. These results indicate that there are critical differences in gene content and survival strategies among genetically clustered L. plantarum strains, regardless of habitats.

Effects of $CoCl_2$ on Osteogenic Differentiation of Human Mesenchymal Stem Cells

  • Moon, Yeon-Hee;Son, Jung-Wan;Moon, Jung-Sun;Kang, Jee-Hae;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.111-119
    • /
    • 2013
  • Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride ($CoCl_2$) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. Study design. The dose and exposure periods for $CoCl_2$ in hMSCs were optimized by cell viability assays. After confirmation of $CoCl_2$-induced HIF-$1{\alpha}$ and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with $CoCl_2$ on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. Results. Variable $CoCl_2$ dosages (up to $500{\mu}M$) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After $CoCl_2$ treatment of hMSCs at $100{\mu}M$ for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by $CoCl_2$ treatment.