DOI QR코드

DOI QR Code

Effects of $CoCl_2$ on Osteogenic Differentiation of Human Mesenchymal Stem Cells

  • Moon, Yeon-Hee (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Son, Jung-Wan (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Moon, Jung-Sun (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kang, Jee-Hae (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Sun-Hun (Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Min-Seok (Dental Science Research Institute, School of Dentistry, Chonnam National University)
  • Received : 2013.07.15
  • Accepted : 2013.08.10
  • Published : 2013.09.30

Abstract

Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride ($CoCl_2$) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. Study design. The dose and exposure periods for $CoCl_2$ in hMSCs were optimized by cell viability assays. After confirmation of $CoCl_2$-induced HIF-$1{\alpha}$ and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with $CoCl_2$ on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. Results. Variable $CoCl_2$ dosages (up to $500{\mu}M$) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After $CoCl_2$ treatment of hMSCs at $100{\mu}M$ for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by $CoCl_2$ treatment.

Keywords

References

  1. Van der Kooy D, Weiss S. Why stem cells? Science. 2000, 287(5457):1439-41. https://doi.org/10.1126/science.287.5457.1439
  2. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001, 105(7):829-41. https://doi.org/10.1016/S0092-8674(01)00409-3
  3. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci. 1999, 96(19):10711-6. https://doi.org/10.1073/pnas.96.19.10711
  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284(5411):143-7. https://doi.org/10.1126/science.284.5411.143
  5. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000, 6(11):1282-6. https://doi.org/10.1038/81395
  6. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000, 164(2):247-56. https://doi.org/10.1006/exnr.2000.7389
  7. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001, 105(3):369-77. https://doi.org/10.1016/S0092-8674(01)00328-2
  8. Oh SY, Park HW, Cho JS, Jung HK, Lee SP, Park KS, Chang MS. Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells. Int J Oral Biol. 2009, 34(4):177-83.
  9. Park EG, Cho TJ, Oh KH, Kwon SK, Lee DS, Park SB, Cho JJ. Establishment of High Throughput Screening System Using Human Umbilical Cord-derived Mesenchymal Stem Cells. Int J Oral Biol. 2012, 37(2):43-50.
  10. Cakouros, D., Isenmann, S., Cooper, L., Zannettino, A., Anderson, P., Glackin, C., and Gronthos, S. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol Cell Biol. 2012, 32:1433-41. https://doi.org/10.1128/MCB.06315-11
  11. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997, 276(5309):71-4. https://doi.org/10.1126/science.276.5309.71
  12. Javazon EH, Colter DC, Schwarz EJ, Prockop DJ. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells. 2001, 19(3):219-25. https://doi.org/10.1634/stemcells.19-3-219
  13. Cipolleschi MG, Dello Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993, 82(7):2031-7.
  14. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001, 187(3):345-55. https://doi.org/10.1002/jcp.1081
  15. Csete M. Oxygen in the cultivation of stem cells. Ann N Y Acad Sci. 2005, 1049:1-8. https://doi.org/10.1196/annals.1334.001
  16. Ma T, Grayson WL, Frohlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog. 2009, 25(1):32-42. https://doi.org/10.1002/btpr.128
  17. Calvi, L. M., Bromberg, O., Rhee, Y., Weber, J. M., Smith, J. N., Basil, M. J., Frisch, B. J., and Bellido, T. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood. 2012, 119:2489-99. https://doi.org/10.1182/blood-2011-06-360933
  18. Polykandriotis E, Arkudas A, Euler S, Beier JP, Horch RE, Kneser U. Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir. 2006, 38(4):217-23. https://doi.org/10.1055/s-2006-924419
  19. Malda J, Klein TJ, Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007, 13(9):2153-62. https://doi.org/10.1089/ten.2006.0417
  20. Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutschler W, Schieker M. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A. 2008, 14(8):1331-40. https://doi.org/10.1089/ten.tea.2007.0231
  21. Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006, 207(2):331-9. https://doi.org/10.1002/jcp.20571
  22. Potier E, Ferreira E, Meunier A, Sedel L, Logeart-Avramoglou D, Petite H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007, 13(6):1325-31. https://doi.org/10.1089/ten.2006.0325
  23. Mylotte LA, Duffy AM, Murphy M, O'Brien T, Samali A, Barry F, Szegezdi E. Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells. 2008, 26(5):1325-36. https://doi.org/10.1634/stemcells.2007-1072
  24. Tuncay OC, Ho D, Barker MK. Oxygen tension regulates osteoblast function. Am J Orthod Dentofacial Orthop. 1994, 105(5):457-63. https://doi.org/10.1016/S0889-5406(94)70006-0
  25. Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, Gittes GK, Longaker MT. Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg. 1999, 104(3):738-47. https://doi.org/10.1097/00006534-199909010-00019
  26. Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT. Hypoxia regulates osteoblast gene expression. J Surg Res. 2001, 99(1):147-55. https://doi.org/10.1006/jsre.2001.6128
  27. Park JH, Park BH, Kim HK, Park TS, Baek HS. Hypoxia decreases Runx2/Cbfa1 expression in human osteoblastlike cells. Mol Cell Endocrinol. 2002, 192(1-2):197-203. https://doi.org/10.1016/S0303-7207(02)00036-9
  28. Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem. 2004, 279(38):40007-16. https://doi.org/10.1074/jbc.M403715200
  29. Pacary E, Legros H, Valable S, Duchatelle P, Lecocq M, Petit E, Nicole O, Bernaudin M. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci. 2006, 119(Pt 13):2667-78. https://doi.org/10.1242/jcs.03004
  30. Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D, Petite H. Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone. 2007, 40(4):1078-87. https://doi.org/10.1016/j.bone.2006.11.024
  31. Volkmer E, Kallukalam BC, Maertz J, Otto S, Drosse I, Polzer H, Bocker W, Stengele M, Docheva D, Mutschler W, Schieker M. Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng Part A. 2010, 16(1):153-64. https://doi.org/10.1089/ten.tea.2009.0021
  32. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 1997, 272(31):19253-60. https://doi.org/10.1074/jbc.272.31.19253
  33. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci. 1998, 95(20):11715-20. https://doi.org/10.1073/pnas.95.20.11715
  34. Jung JY, Mo HC, Yang KH, Jeong YJ, Yoo HG, Choi NK, Oh WM, Oh HK, Kim SH, Lee JH, Kim HJ, Kim WJ. Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 2007, 80(15):1355-63. https://doi.org/10.1016/j.lfs.2006.11.033
  35. Isenmann, S., Arthur, A., Zannettino, A. C., Turner, J. L., Shi, S., Glackin, C. A., and Gronthos, S. TWIST family of basic Helix-Loop-Helix Transcription Factors Mediate Human Mesenchymal Stromal/Stem Cell Growth and Commitment. Stem Cells. 2009, 27(10):2457-68 https://doi.org/10.1002/stem.181
  36. Gunn, E.J., Williams, J.T., Huynh, D.T., Iannotti, M.J., Han, C., Barrios, F.J., Kendall, S., Glackin, C.A., Colby, D.A., and Kirshner, J. The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma, Leukemia & lymphoma. 2011, 52:1085-97. https://doi.org/10.3109/10428194.2011.555891
  37. Samineni, S., Glackin, C., and Shively, J.E. Role of CEACAM1, ECM, and mesenchymal stem cells in an orthotopic model of human breast cancer, International journal of breast cancer. 2011, 381080.
  38. Mackenzie TC, Flake AW. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis. 2001, 27(3):601-4. https://doi.org/10.1006/bcmd.2001.0424
  39. Reyes GD, Esterling LE, Corona W, Ferraren D, Rollins DY, Padigaru M, Yoshikawa T, Monje VD, Detera- Wadleigh SD. Map of candidate genes and STSs on 18p11.2, a bipolar disorder and schizophrenia susceptibility region. Mol Psychiatry. 2002, 7(4):337-9. https://doi.org/10.1038/sj.mp.4001000
  40. Wiedswang G, Borgen E, Karesen R, Naume B. Detection of isolated tumor cells in BM from breast-cancer patients: significance of anterior and posterior iliac crest aspirations and the number of mononuclear cells analyzed. Cytotherapy. 2003, 5(1):40-5. https://doi.org/10.1080/14653240310000065
  41. Huang G, Zheng Q, Sun J, Guo C, Yang J, Chen R, Xu Y, Wang G, Shen D, Pan Z, Jin J, Wang J. Stabilization of cellular properties and differentiation mutilpotential of human mesenchymal stem cells transduced with hTERT gene in a long-term culture. J Cell Biochem. 2008, 103(4):1256-69. https://doi.org/10.1002/jcb.21502
  42. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006, 441(7092):437-43. https://doi.org/10.1038/nature04871
  43. Riddle RC, Khatri R, Schipani E, Clemens TL. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med. 2009, 87(6):583-90. https://doi.org/10.1007/s00109-009-0477-9
  44. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL. The hypoxiainducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007, 117(6):1616-26. https://doi.org/10.1172/JCI31581
  45. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci. 1997, 94(15):8104-9. https://doi.org/10.1073/pnas.94.15.8104
  46. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, Harris AL. Targeting gene expression to hypoxic tumor cells. Nat Med. 1997, 3(5):515-20. https://doi.org/10.1038/nm0597-515
  47. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999, 13(22):2905-27. https://doi.org/10.1101/gad.13.22.2905
  48. Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008, 26(8):2173-82. https://doi.org/10.1634/stemcells.2007-1104
  49. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006, 20(6):661-9. https://doi.org/10.1096/fj.05-5211com
  50. Liu X, Saboo RR, Pizer SM, Mageras GS. Lysophosphatidic acid protects mesenchymal stem cells against ischemia induced apoptosis in vivo. Stem cells Dev. 2009, 18(7):947-54. https://doi.org/10.1089/scd.2008.0352
  51. Zhu W, Chen J, Cong X, Hu S, Chen X. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells. 2006, 24(2):416-25. https://doi.org/10.1634/stemcells.2005-0121
  52. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lutzow K, Lendlein A, Stamm C, Li RK, Steinhoff G. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007, 25(8):2118-27. https://doi.org/10.1634/stemcells.2006-0771
  53. Lord-Dufour S, Copland IB, Levros LC Jr, Post M, Das A, Khosla C, Galipeau J, Rassart E, Annabi B. Evidence for transcriptional regulation of the glucose-6-phosphate transporter by HIF-1alpha: Targeting G6PT with mumbaistatin analogs in hypoxic mesenchymal stromal cells. Stem Cells. 2009, 27(3):489-97. https://doi.org/10.1634/stemcells.2008-0855
  54. Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC, Einhorn TA, Deng L, Clemens TL. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci. 2008, 105(2):686-91. https://doi.org/10.1073/pnas.0708474105
  55. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cellconditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res. 2009, 44(2):199-210. https://doi.org/10.1111/j.1600-0765.2008.01106.x
  56. Ren H, Cao Y, Zhao Q, Li J, Zhou C, Liao L, Jia M, Zhao Q, Cai H, Han ZC, Yang R, Chen G, Zhao RC. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun. 2006, 347(1):12-21. https://doi.org/10.1016/j.bbrc.2006.05.169