Browse > Article
http://dx.doi.org/10.4014/jmb.1803.03029

Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association  

Choi, Sukjung (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University)
Jin, Gwi-Deuk (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University)
Park, Jongbin (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University)
You, Inhwan (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University)
Kim, Eun Bae (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.8, 2018 , pp. 1352-1359 More about this Journal
Abstract
Lactobacillus plantarum is a lactic acid bacterium that promotes animal intestinal health as a probiotic and is found in a wide variety of habitats. Here, we investigated the genomic features of different clusters of L. plantarum strains via pan-genomic analysis. We compared the genomes of 108 L. plantarum strains that were available from the NCBI GenBank database. These genomes were 2.9-3.7 Mbp in size and 44-45% in G+C content. A total of 8,847 orthologs were collected, and 1,709 genes were identified to be shared as core genes by all the strains analyzed. On the basis of SNPs from the core genes, 108 strains were clustered into five major groups (G1-G5) that are different from previous reports and are not clearly associated with habitats. Analysis of group-specific enriched or depleted genes revealed that G1 and G2 were rich in genes for carbohydrate utilization (${\text\tiny{L}}-arabinose$, ${\text\tiny{L}}-rhamnose$, and fructooligosaccharides) and that G3, G4, and G5 possessed more genes for the restriction-modification system and MazEF toxin-antitoxin. These results indicate that there are critical differences in gene content and survival strategies among genetically clustered L. plantarum strains, regardless of habitats.
Keywords
Lactobacillus plantarum; SNP; animal; plant; comparative genomics; pan-genome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Holzapfel W, Wood BJ. 2012. The Genera of Lactic Acid Bacteria. Springer Science & Business Media, Berlin.
2 Makarova KS, Koonin EV. 2007. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189: 1199-1208.   DOI
3 De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum - survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028.   DOI
4 Aizenman E, Engelberg-Kulka H, Glaser G. 1996. An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93: 6059-6063.   DOI
5 Mittenhuber G. 1999. Occurence of MazEF-like antitoxin/toxin systems in bacteria. J. Mol. Microbiol. Biotechnol. 1: 295-302.
6 Nystrom T. 1998. To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol. Rev. 21: 283-290.   DOI
7 Gormley NA, Watson MA, Halford SE. 2001. Bacterial restriction-modification systems. eLS DOI: 10.1038/npg.els.0001037.   DOI
8 Kobayashi I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29: 3742-3756.   DOI
9 Plumed-Ferrer C, Koistinen KM, Tolonen TL, Lehesranta SJ, Karenlampi SO, Makimattila E, et al. 2008. Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Appl. Environ. Microbiol. 74: 5349-5358.   DOI
10 Zago M, Fornasari ME, Carminati D, Burns P, Suarez V, Vinderola G, et al. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol. 28: 1033-1040.   DOI
11 Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211.   DOI
12 Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. 2017. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins 9: 111-122.   DOI
13 Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M. 2005. Exploring Lactobacillus plantarum genome diversity by using microarrays. J. Bacteriol. 187: 6119-6127.   DOI
14 Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, et al. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12: 758-773.   DOI
15 Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, et al. 2016. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ. Microbiol. 18: 4974-4989.   DOI
16 Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. 2012. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One 7: e30187.   DOI
17 Kim EB, Marco ML. 2014. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl. Environ. Microbiol. 80: 154-165.   DOI
18 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.   DOI
19 Kopit LM, Kim EB, Siezen RJ, Harris LJ, Marco ML. 2014. Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl. Environ. Microbiol. 80: 1899-1909.   DOI
20 Kim EB, Jin GD, Lee JY, Choi YJ. 2016. Genomic features and niche-adaptation of Enterococcus faecium strains from Korean soybean-fermented foods. PLoS One 11: e0153279.   DOI
21 Rizk G, Lavenier D. 2010. GASSST: global alignment short sequence search tool. Bioinformatics 26: 2534-2540.   DOI
22 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.   DOI
23 Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.   DOI
24 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
25 Siliakus MF, van der Oost J, Kengen SW. 2017. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21: 651-670.   DOI
26 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI
27 Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035.   DOI