Browse > Article
http://dx.doi.org/10.11620/IJOB.2013.38.3.111

Effects of $CoCl_2$ on Osteogenic Differentiation of Human Mesenchymal Stem Cells  

Moon, Yeon-Hee (Dental Science Research Institute, School of Dentistry, Chonnam National University)
Son, Jung-Wan (Dental Science Research Institute, School of Dentistry, Chonnam National University)
Moon, Jung-Sun (Dental Science Research Institute, School of Dentistry, Chonnam National University)
Kang, Jee-Hae (Dental Science Research Institute, School of Dentistry, Chonnam National University)
Kim, Sun-Hun (Dental Science Research Institute, School of Dentistry, Chonnam National University)
Kim, Min-Seok (Dental Science Research Institute, School of Dentistry, Chonnam National University)
Publication Information
International Journal of Oral Biology / v.38, no.3, 2013 , pp. 111-119 More about this Journal
Abstract
Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride ($CoCl_2$) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. Study design. The dose and exposure periods for $CoCl_2$ in hMSCs were optimized by cell viability assays. After confirmation of $CoCl_2$-induced HIF-$1{\alpha}$ and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with $CoCl_2$ on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. Results. Variable $CoCl_2$ dosages (up to $500{\mu}M$) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After $CoCl_2$ treatment of hMSCs at $100{\mu}M$ for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by $CoCl_2$ treatment.
Keywords
MSC; osteogenic differentiation; hypoxia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci. 1999, 96(19):10711-6.   DOI
2 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284(5411):143-7.   DOI
3 Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000, 6(11):1282-6.   DOI
4 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000, 164(2):247-56.   DOI
5 Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001, 105(3):369-77.   DOI
6 Oh SY, Park HW, Cho JS, Jung HK, Lee SP, Park KS, Chang MS. Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells. Int J Oral Biol. 2009, 34(4):177-83.
7 Park EG, Cho TJ, Oh KH, Kwon SK, Lee DS, Park SB, Cho JJ. Establishment of High Throughput Screening System Using Human Umbilical Cord-derived Mesenchymal Stem Cells. Int J Oral Biol. 2012, 37(2):43-50.
8 Cakouros, D., Isenmann, S., Cooper, L., Zannettino, A., Anderson, P., Glackin, C., and Gronthos, S. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol Cell Biol. 2012, 32:1433-41.   DOI
9 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997, 276(5309):71-4.   DOI
10 Potier E, Ferreira E, Meunier A, Sedel L, Logeart-Avramoglou D, Petite H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007, 13(6):1325-31.   DOI
11 Mylotte LA, Duffy AM, Murphy M, O'Brien T, Samali A, Barry F, Szegezdi E. Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells. 2008, 26(5):1325-36.   DOI
12 Tuncay OC, Ho D, Barker MK. Oxygen tension regulates osteoblast function. Am J Orthod Dentofacial Orthop. 1994, 105(5):457-63.   DOI
13 Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, Gittes GK, Longaker MT. Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg. 1999, 104(3):738-47.   DOI
14 Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT. Hypoxia regulates osteoblast gene expression. J Surg Res. 2001, 99(1):147-55.   DOI
15 Park JH, Park BH, Kim HK, Park TS, Baek HS. Hypoxia decreases Runx2/Cbfa1 expression in human osteoblastlike cells. Mol Cell Endocrinol. 2002, 192(1-2):197-203.   DOI
16 Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem. 2004, 279(38):40007-16.   DOI
17 Pacary E, Legros H, Valable S, Duchatelle P, Lecocq M, Petit E, Nicole O, Bernaudin M. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci. 2006, 119(Pt 13):2667-78.   DOI
18 Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D, Petite H. Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone. 2007, 40(4):1078-87.   DOI
19 Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 1997, 272(31):19253-60.   DOI
20 Volkmer E, Kallukalam BC, Maertz J, Otto S, Drosse I, Polzer H, Bocker W, Stengele M, Docheva D, Mutschler W, Schieker M. Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng Part A. 2010, 16(1):153-64.   DOI
21 Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci. 1998, 95(20):11715-20.   DOI
22 Jung JY, Mo HC, Yang KH, Jeong YJ, Yoo HG, Choi NK, Oh WM, Oh HK, Kim SH, Lee JH, Kim HJ, Kim WJ. Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 2007, 80(15):1355-63.   DOI
23 Isenmann, S., Arthur, A., Zannettino, A. C., Turner, J. L., Shi, S., Glackin, C. A., and Gronthos, S. TWIST family of basic Helix-Loop-Helix Transcription Factors Mediate Human Mesenchymal Stromal/Stem Cell Growth and Commitment. Stem Cells. 2009, 27(10):2457-68   DOI
24 Gunn, E.J., Williams, J.T., Huynh, D.T., Iannotti, M.J., Han, C., Barrios, F.J., Kendall, S., Glackin, C.A., Colby, D.A., and Kirshner, J. The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma, Leukemia & lymphoma. 2011, 52:1085-97.   DOI
25 Samineni, S., Glackin, C., and Shively, J.E. Role of CEACAM1, ECM, and mesenchymal stem cells in an orthotopic model of human breast cancer, International journal of breast cancer. 2011, 381080.
26 Mackenzie TC, Flake AW. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis. 2001, 27(3):601-4.   DOI
27 Reyes GD, Esterling LE, Corona W, Ferraren D, Rollins DY, Padigaru M, Yoshikawa T, Monje VD, Detera- Wadleigh SD. Map of candidate genes and STSs on 18p11.2, a bipolar disorder and schizophrenia susceptibility region. Mol Psychiatry. 2002, 7(4):337-9.   DOI
28 Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006, 441(7092):437-43.   DOI
29 Wiedswang G, Borgen E, Karesen R, Naume B. Detection of isolated tumor cells in BM from breast-cancer patients: significance of anterior and posterior iliac crest aspirations and the number of mononuclear cells analyzed. Cytotherapy. 2003, 5(1):40-5.   DOI
30 Huang G, Zheng Q, Sun J, Guo C, Yang J, Chen R, Xu Y, Wang G, Shen D, Pan Z, Jin J, Wang J. Stabilization of cellular properties and differentiation mutilpotential of human mesenchymal stem cells transduced with hTERT gene in a long-term culture. J Cell Biochem. 2008, 103(4):1256-69.   DOI
31 Riddle RC, Khatri R, Schipani E, Clemens TL. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med. 2009, 87(6):583-90.   DOI
32 Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL. The hypoxiainducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007, 117(6):1616-26.   DOI
33 Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci. 1997, 94(15):8104-9.   DOI
34 Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, Harris AL. Targeting gene expression to hypoxic tumor cells. Nat Med. 1997, 3(5):515-20.   DOI
35 Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999, 13(22):2905-27.   DOI
36 Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008, 26(8):2173-82.   DOI
37 Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lutzow K, Lendlein A, Stamm C, Li RK, Steinhoff G. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007, 25(8):2118-27.   DOI
38 Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006, 20(6):661-9.   DOI
39 Liu X, Saboo RR, Pizer SM, Mageras GS. Lysophosphatidic acid protects mesenchymal stem cells against ischemia induced apoptosis in vivo. Stem cells Dev. 2009, 18(7):947-54.   DOI
40 Zhu W, Chen J, Cong X, Hu S, Chen X. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells. 2006, 24(2):416-25.   DOI
41 Lord-Dufour S, Copland IB, Levros LC Jr, Post M, Das A, Khosla C, Galipeau J, Rassart E, Annabi B. Evidence for transcriptional regulation of the glucose-6-phosphate transporter by HIF-1alpha: Targeting G6PT with mumbaistatin analogs in hypoxic mesenchymal stromal cells. Stem Cells. 2009, 27(3):489-97.   DOI
42 Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC, Einhorn TA, Deng L, Clemens TL. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci. 2008, 105(2):686-91.   DOI
43 Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cellconditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res. 2009, 44(2):199-210.   DOI
44 Ren H, Cao Y, Zhao Q, Li J, Zhou C, Liao L, Jia M, Zhao Q, Cai H, Han ZC, Yang R, Chen G, Zhao RC. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun. 2006, 347(1):12-21.   DOI
45 Csete M. Oxygen in the cultivation of stem cells. Ann N Y Acad Sci. 2005, 1049:1-8.   DOI
46 Van der Kooy D, Weiss S. Why stem cells? Science. 2000, 287(5457):1439-41.   DOI
47 Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001, 105(7):829-41.   DOI
48 Javazon EH, Colter DC, Schwarz EJ, Prockop DJ. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells. 2001, 19(3):219-25.   DOI
49 Cipolleschi MG, Dello Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993, 82(7):2031-7.
50 Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001, 187(3):345-55.   DOI
51 Ma T, Grayson WL, Frohlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog. 2009, 25(1):32-42.   DOI
52 Calvi, L. M., Bromberg, O., Rhee, Y., Weber, J. M., Smith, J. N., Basil, M. J., Frisch, B. J., and Bellido, T. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood. 2012, 119:2489-99.   DOI
53 Polykandriotis E, Arkudas A, Euler S, Beier JP, Horch RE, Kneser U. Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir. 2006, 38(4):217-23.   DOI
54 Malda J, Klein TJ, Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007, 13(9):2153-62.   DOI
55 Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutschler W, Schieker M. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A. 2008, 14(8):1331-40.   DOI
56 Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006, 207(2):331-9.   DOI